The Whittle Jet Propulsion Gas Turbine


No. 1

INTRODUCTION AND GENERAL OUTLINE

The main argument against the gas turbine was that the maximum temperatures permissible with materials available, or likely to be available, was such that the ratio of positive to negative work in the constant-pressure cycle could not be great enough to allow of a reasonably man useful work to be obtained, after allowing for the losses in the turbine and compressor. There seemed to be a curious tendency to take it for granted that the low efficiencies of turbines and compressors, commonly cited were inevitable. I did not share the prevalent pessimism because I was convinced that big improvements in these efficiencies were possible.

a Flight Cadet at the R.A.F. College, Cranwell. Each term we had to write a science thesis, and in my fourth term I chose for my subject the formation of Power Jets. Amongst other things, I discussed the possibilities of jet propulsion and of gas turbines; but it was not until eighteen months later, when on an ex-R.A.F. officer's course at Central Flying School, Wittering, that I conceived the idea of using a gas turbine for jet propulsion. I applied for my first patent in January, 1930. The passenger drawing of the patent specification as filed is reproduced in Fig. 1. It may be seen that I tried to include the propulsive duct or nozzle. But the idea had been anticipated at least twice, so the upper drawing and relevant descriptive matter had to be deleted from the specification.

The idea was submitted to the Air Ministry, but was turned down on the ground that as it was a gas turbine the practical difficulties in the way of the development were too great.

During 1930 I tried to interest various firms in the scheme, but met with no success; for the most part they thought the same way as did the Air Ministry. It is probably also true that in their view the prevalent industrial depression made it anything but a favourable moment for expensive ideas of this sort.

Nothing very much happened for a few years. I gave up hope of ever getting the idea to the practical stage, and continued to do paper work at intervals, until, in May, 1935, when I was at Cambridge as an engineer officer taking the Tripos Course, I was approached by two ex-R.A.F. officers (Mr. R. D. Williams and Mr. J. C. B. Tiling), who suggested that they should try to get something started. Though I had allowed the original patent to lapse through failure to pay the renewal fee, and though I regarded them as extremely optimistic, I agreed to collaborate. I thought that there was just a bare chance that something might come of it.

We eventually succeeded in coming to an arrangement with a number of investment bankers (Messrs. O. T. Falk and Partners), which led to the formation of Power Jets, Ltd., in March, 1936. Beforehand, Messrs. O. T. Falk and Partners obtained the opinion of a consulting engineer (Mr. M. L. Bramson), who gave a wholly favourable report. The initial sum subscribed was £2000, and with this we cheerfully went ahead.

The President of the Air Council was a party to the agreement which resulted in the formation of Power Jets, and the Air Ministry was a shareholder from the start in that proportion of the shares allotted to me was held in trust for the Department.

During the negotiations leading to the formation of Power Jets, I was working on the designs of an experimental engine. Messrs. O. T. Falk and Partners placed an order with the British Thomson-Houston Company, Ltd., for engineering and design work in accordance with my requirements in advance of the formation of the new company. Power Jets placed the order for the manufacture of the engine (except the combustion chamber, instruments, and some accessories), with the British Thomson-Houston Company in June, 1936.

The engine was to be a simple jet propulsion gas turbine having a single-stage centrifugal compressor with bilateral intakes, driven by a single-stage turbine directly coupled. Combustion was to take place in a single combustion chamber through which the working fluid passed from the compressor to the turbine.

We were going beyond all previous engineering experience in each of the major organs. We were aiming at a pressure ratio of about 4½ in a single-stage centrifugal blower, at the time, so far as we knew, a ratio of 2½ had not been exceeded. We were aiming at a breathing capacity in proportion to size substantially greater than had previously been attempted.

The combustion intensity we aimed to achieve was far beyond anything previously attempted. Finally, we had first got over the hurdle of making a single-stage turbine wheel of about 16in. outside diameter, and to do it with high efficiency.

At first, our intention was to do the job stage by stage—that is, to make a compressor and test it; then to add a combustion chamber to the compressor; then to test a turbine alone; and finally to build an engine—but we very soon realised that this was likely to be a long and costly pro cесс and we decided to go for a complete engine right away.

This first engine was based on a design for flight, but was not intended for flight; and though it was designed to be very light by normal engineering standards, we did not put forth special efforts to make it as light as possible.

I was fully confident in the compressor and turbine elements, but felt rather out of my depth with the combustion problem, and so (in 1936) I visited the British Industries Fair with a view to enlisting the help of one of the oil burner firms, but the requirements I specified were considered to be far too stringent by most of them until Mr. Laiddaw, of Laiddaw, Drew and Co. Though he recognised that we were aiming at something far in advance of previous experience, in this field he considered the target possible of attainment, and so it was with his help that we attacked the combustion problem.

While the engine was in course of design and manufacture, we carried out a number of combustion experiments on the premises of the British Thomson-Houston Company, with fuel supplied by Laidlaw, Drew and Co., until we considered that we had enough evidence to formulation to design a combustion chamber. Power Jets therefore placed the contract for the design and manufacture of the combustion chamber with Laidlaw, Drew and Co.
By this time the Tripol Examinations at Cambridge were over, and the Air Ministry had agreed that I should stay for a post-graduate year. This was really a device to enable me to continue work on the engine, and so a considerable proportion of my time was spent at the British Thomson-Houston Company’s works in Rugby.

The engine commenced on April 12th, 1937, and continued intermittently until August 23rd. These early tests made it clear that the combustion problem was not yet solved, and that the compressor performance was far below expectations. Nevertheless, they were sufficiently encouraging to show that we were on the right track.

THE DESIGN AND TESTING OF THE EXPERIMENTAL ENGINE

The Design and Testing of the First Model: Design.—The first engine was designed with a specific target in mind. It was a very optimistic one, but, nevertheless, it formed the starting point and is worth recording. The aim was to propel a very "clean" little aeroplane of about 2000 lb. "all up" weight at a speed of 560 m.p.h., at a height of the order of 70,000ft. This speed was estimated to correspond to that of minimum drag at that height, i.e., this high speed was the most economical speed for the height. It was estimated that a net thrust at this height of 111 lb. would be required.

The size of engine corresponding to the data was considered to be the smallest in which the necessary accuracy of machining could be obtained without excessive manufacturing costs. The design assumptions and leading particulars are given in Table 1, and the pressure-volume cycle shown in Fig. 2.

TABLE 1.—Leading Particulars of First Edition of Experimental Engine

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor impeller—</td>
<td></td>
</tr>
<tr>
<td>Tip diameter</td>
<td>19</td>
</tr>
<tr>
<td>Tip width</td>
<td>2</td>
</tr>
<tr>
<td>Outer diameter of eye</td>
<td>10.5</td>
</tr>
<tr>
<td>Inner diameter of eye</td>
<td>5.5</td>
</tr>
<tr>
<td>Number of blades</td>
<td>30</td>
</tr>
<tr>
<td>Material</td>
<td>Aluminium RR 56</td>
</tr>
<tr>
<td>Compressor casing—</td>
<td></td>
</tr>
<tr>
<td>Inner diameter of scroll</td>
<td>31</td>
</tr>
<tr>
<td>Material</td>
<td>Aluminium RR 55, DTD, 133 B</td>
</tr>
<tr>
<td>Turbine—</td>
<td></td>
</tr>
<tr>
<td>Mean diameter of blades</td>
<td>14</td>
</tr>
<tr>
<td>Blade length</td>
<td></td>
</tr>
<tr>
<td>Material of blade</td>
<td>Forth-Vickers Stayblade</td>
</tr>
<tr>
<td>Material of disc</td>
<td>Forth-Vickers Stayblade</td>
</tr>
<tr>
<td>Blade angle</td>
<td></td>
</tr>
<tr>
<td>Number of blades</td>
<td>66</td>
</tr>
<tr>
<td>Maximum speed</td>
<td></td>
</tr>
<tr>
<td>Revs per minute</td>
<td>17,500</td>
</tr>
</tbody>
</table>

Figs. 3, 4, and 5 illustrate various features of the design, which are further amplified in Figs. 6, 7, 8, and 9.

The assumption of 60 per cent. adiabatic efficiency for a centrifugal compressor running at a tip speed of 1470ft. per second was very optimistic indeed, and received a good deal of criticism, but I felt confident that we could design to avoid many of the losses which were occurring in all centrifugal compressors of which I had knowledge at the time. The general view was that we should be fortunate if we got 65 per cent. adiabatic efficiency.

We went for the double-sided compressor because we wanted to get the greatest possible breathing capacity in proportion to size. I also counted on this feature to give a reduced proportion of skin friction losses. We aimed at having as many blades on the impeller as manufacturing limitations would permit, in order to keep the blade leading as low as possible. In particular, it was hoped that by keeping the pitch-chord ratio of the rotating guide vane small we should avoid stalling at the intake, as I believed then—and still believe—that this is one of the main sources of loss in centrifugal compressors.

No diffuser blades were fitted to the blower casing at first. Two stages of diffusion were aimed at. The intention was to obtain partial diffusion in the bladeless vortex space between the impeller tips and the scroll, and to convert most of the remaining kinetic energy into pressure in the "honeycomb" diffuser through which the air passed from the compressor scroll to the combustion chamber.

The turbine nozzle arrangement was very unorthodox, as no nozzle blades were used. The idea was that most of the expansion took place in the convergent-divergent entry to the nozzle scroll which was shaped to cause the discharge of the gases through its annular mouth with constant axial velocity, the whirl velocity corresponding to that of the free vortex, i.e., constant angular momentum. This nozzle design was the source of considerable controversy, and though I am not very proud of it now, I thought it a good idea at the time. It is of considerable interest in retrospect, because it became evident later than I had not succeeded in conveying to others what I had in mind.

Air tests were made on a half-scale model of this nozzle, and though very rough they seemed to show that it would behave approximately as expected.

The design of the rotor assembly needed much careful thought. It was considered necessary to use unburned forgings for both the turbine wheel and compressor impeller, also to use an overhung turbine rotor, as it was thought that the provision of a satisfactory bearing support on the exhaust side of the turbine would be very difficult. The bearing housing assembly which contained one of the two water jackets for the turbine cooling could not be split in the diameter plane. These considerations governed the rotor design.

The starting procedure was as follows:—The engine was made ready, and the pilot jet (which injected an atomised spray) was switched on and ignited by means of a high-explosive spark. The motor speed was then raised to about 3000 r.p.m., and the main control opened slowly. The engine would then accelerate under its own power; but, of course, unknown to us, there was a "lace" of fuel in the combustion chamber. Other uncontrolled accelerations were caused by the sudden opening of the valve on a water-jacketed spring through overheating, and by initial sticking ; by loss of temper in the burner spring through overheating, &c. Fortunately, none of these uncontrolled accelerations took the engine beyond about 9000 r.p.m. 

No trouble was ever experienced in starting except when the ignition failed through cracked electrodes, or when mistakes were made in the assembly of the fuel lines.

The overheating of the burner already referred to was a serious problem, and as a result of it a fairly drastic change in the combustion system was made. We changed over to downstraw injection. Five runs were then made with this system up to maximum speeds of about 8500 r.p.m., but the combustion was so bad that this speed could not be exceeded. Any further attempt to keep the extra power only resulted in the burning of more fuel aft of the turbine.

Many attempts to improve the combustion were made by a series of modifications to the engine when chamber at about 1000 r.p.m., and was achieved—we managed to get up to a speed of 11,000 r.p.m. for 10 min. This series of runs without plug and head magnets. The motor speed was then reduced to 8500 r.p.m. and the casing after running for 4 min. at 12,000 r.p.m.

The damage to the compressor and impeller casing was only slight, but as it had now become clear that the compressor was much below expectations, we
the burner now being insulated against overheating by using a fuel-cooling arrangement. Combustion appeared to be improved, and for the first time in the series the casings reached glow heat at speeds of up to 12,000 r.p.m.

Testing was now suspended for the following reasons. First, because the speed restriction of 12,000 r.p.m. made it necessary to find a new site for running at higher speeds, and, secondly, to the national standards bodies in Britain, America, and Canada, so that what is termed an 'A.B.C.' standard will be speedily approved. Precautionary tests were made for small screws and various screws and threads used in the optical and scientific instrument trades, and on buttress thread forms. Considerable progress was made in gathering data on high-duty studs in light alloys, but a great deal more exploratory work is, it is felt, required. Drawing practice and its unification were discussed, and it was agreed that this subject be actively pursued. Pipe threads were dealt with and an invitation to the British and Canadian representatives to continue discussions of this subject at the November meetings of the American Petroleum Institute were given. On the question of limit values from existing standards for screws and nuts, a further meeting with the British delegates will be held in New York before the return of the delegates to the United Kingdom. It was furthermore decided to discuss a possible method of procedure to maintain and co-ordinate future practice. Proposed specifications for screw threads and connections for gas cylinders were presented. On the whole, this third Conference exemplified the spirit of collaboration which prevails among the engineering professions of the three English-speaking countries.

Institution Programmes

Programmes for the session 1945-46 have now been announced by the following institutions and societies:

INSTITUTE OF MARINE ENGINEERS


December 11th; "Deck Machinery, with Particular Reference to Latest Developments," by T. Brown.


February 12th; "The Development of the Opposed-Platine Marine Oil Engine, with Special Reference to Propulsion Work," by T. Brown.

March 12th; "Strain Gauges," by Dr. F. A. Ashcroft.

April 9th; "Engine-Room Lay-Out, with Special Reference to Pipe Work," by Lieut.-Colonel C. Rochfort, M.C., D.S.O.


May 14th; "An Air Preheater Design, Construction, and Maintenance," by W. Crawford Hum.".

September 10th; The President's Address.

October 8th; "Vacuum Refrigeration," by W. Sampson.

November 12th; "Resistance Welding in Engineering Construction," by Prof. E. S. T. Peaker, D.Sc., F.R.S.

ROYAL AERONAUTICAL SOCIETY

October 18th, 1945; "Aircraft Engine Oil Cooling," by E. F. Nixon, B.Sc., M.I.A.E., F.R.Ae.S.


November 15th; "First British Empire Lecture. "Australian and Empire Air Transport," by W. Hudson-Evans, D.F.C.

November 28th; "Aspects of German Aeronautical Development," by W. J. Bern.

December 11th; "Meteorology and High-Altitude Aviation," by Professor S. P. S. Redhead, F.R.S.

December 19th; "Atomic Disintegration," by Professor N. Feather, Ph.D., F.R.S.

OVERSEAS TRADE STATISTICS.—Publication of the Board of Trade's monthly trade accounts will be resumed in the normal form beginning with January, 1946. They will give particulars of all our principal imports, exports, and re-exports, with a considerable amount of information on trade between individual countries. Accounts relating to Great Britain's overseas trade in the first half of 1945 have already been published, and the Board of Trade will publish detailed trade accounts for the first nine months of 1945 and further accounts for the whole year. In addition, a monthly summary (on the lines of those issued during 1940) will be published showing the July and August figures for each group distinguished in the overseas trade statistics; further summaries will be published for October and for November. The July and August summary will be published during this month.