Opção dos jovens por percursos educativos/formativos em TICE: Perceções, bloqueios e fatores facilitadores

Relatório do Estudo
17 novembro 2015

Ana Cláudia Valente (Coord.)
Irina Bettencourt Pereira
Isabel Correia

Fórum Estudante
Agradecimentos

Gostaríamos, em primeiro lugar, de agradecer aos membros da Coligação Portuguesa para a Empregabilidade Digital (CPED) e, em particular, à Fundação para Ciência e Tecnologia I.P, a oportunidade de realizarmos este estudo e todo o apoio e contributos que nos foram dando ao longo da sua realização.

Ao Consórcio Maior Empregabilidade (CME) e à Rede Maior Empregabilidade – Ensino Profissional (RME-EP), pelo interesse com que encararam este desafio, desde o início, e pela colaboração que nos deram.

Um agradecimento muito especial às inúmeras Instituições de Ensino e Formação, ao IEFP, à Academia de Código, à Associação Nacional de Professores de Informática (ANPRI), à CDI Portugal e aos professores, pais e psicólogos que participaram no estudo, pela sua disponibilidade, entusiasmo e valiosos contributos.

Finalmente, queremos agradecer aos jovens e menos jovens com quem conversámos e que, de uma forma muito espontânea e sincera, nos deram os seus testemunhos e nos ajudaram a fazer este trabalho.
Índice

Agradecimentos ... 2
Introdução ... 8

I. Enquadramento e relevância do tema ... 11
 1. A evolução da procura de ensino e formação inicial em TICE em Portugal 11
 2. A reduzida participação das mulheres no ensino e formação inicial em TICE ... 15
 3. O ensino das TIC e da informática no ensino básico e no secundário geral 20
 4. Recursos TIC na escola e formação e atitudes dos professores 25
 5. As competências digitais dos jovens ... 30
 6. As dificuldades “estruturais” em disciplinas nucleares, como a matemática, ao longo dos vários ciclos .. 38
 7. Os requisitos de acesso a cursos superiores em TICE e a necessária consolidação de fileiras de progresso académica nestas áreas ... 42

II. Delimitação do estudo .. 44

III. Metodologia ... 50
 1. Eixo 1, centrado na procura de educação/ formação em TICE 50
 1.1. Modelo de análise ... 50
 1.2. Metodologia: focus-groups ... 52
 2. Eixo 2, centrado na oferta de educação/ formação em TICE 56
 2.1. Critérios de identificação de experiências educativas/ formativas de sucesso em TICE .. 56
 2.2. Metodologia ... 56
 3. Eixo 3, centrado na comunicação, sensibilização e orientação para cursos e carreiras em TICE .. 57
 3.1. Critérios de identificação de boas práticas .. 57
 3.2. Metodologia ... 57

IV. A opção por cursos e carreiras em TICE: percetões, bloqueios e fatores facilitadores ... 59
 1. Jovens no ensino secundário e pós-secundário .. 59
 1.1. As razões da escolha do curso .. 59
 1.2. As influências na escolha do curso e o acesso a informação sobre cursos e profissões .. 66
 1.3. O uso e as competências em TIC ... 73
 1.4. Estudar e trabalhar em TICE: percepções e estereótipos 79
 2. Diplomados do ensino superior em cursos de requalificação para TICE 97
 3. Segregação e estereótipos de género nas TICE .. 106

V. Boas práticas e experiências de sucesso na área das TICE: mobilização, sensibilização e formação ... 112
 1. Panorama europeu: iniciativas em curso e seleção de boas práticas 112
 1.1. Crianças e jovens em fase escolar: básico, secundário e superior 118
 1.2. Jovens e adultos em fase de requalificação .. 120
 1.3. Jovens mulheres e as TICE .. 122
 2. Panorama português: boas práticas e experiências .. 125
 2.1. A juventude digital: “SmartKids, smart life” ... 131
 2.2. Desenvolvimento do “software de oportunidades” para os/as jovens que escolheram as áreas TICE ... 137
 2.3. Reprogramar competências nos jovens e adultos: “a new upgrade and restart!” 141
 2.4. Sensibilização e aproximação à comunidade: “live connected” 144
 2.5. Jovens mulheres e as TICE: “Bytes are girls’ best friends” 147

Conclusões e Recomendações ... 152

Referências bibliográficas ... 165

ANEXOS ... 167

Anexo 1. Matriz Curricular do 3º Ciclo do Ensino Básico 168
Anexo 2. Matriz Curricular dos Cursos Científico-Humanísticos do Ensino Secundário ... 170
Anexo 3. Acesso ao Ensino Superior em TICE, ano letivo 2015/16 175
Anexo 4. Guiões de focus-groups com alunos no ensino secundário e pós-secundário 183
Anexo 5. Guião de focus-groups com diplomados desempregados em cursos de requalificação para TICE ... 202
Anexo 6. Guião de focus-groups com psicólogos dos SPO das escolas 207
Anexo 7. Guião de focus-groups com professores de TIC/ Informática 211
Anexo 8. Guião de focus-groups com pais/ encarregados de educação 215
Anexo 9. Guião de experiências educativas/ formativas de sucesso em TICE 219
Anexo 10. Guião de boas práticas na mobilização de jovens para as áreas de TICE 222
Anexo 11. Instituições de Ensino e Formação participantes no estudo 225
Índice de Quadros

Quadro 1. Estrutura do Quadro Nacional de Qualificações ... 44
Quadro 2. Segmentos e modalidades da oferta de educação e formação ... 45
Quadro 3. Áreas de educação e formação consideradas para as TICE, segundo a CNAEF 46
Quadro 4. Delimitação dos níveis de ensino, modalidades e áreas de educação e formação considerados na análise .. 49
Quadro 5. Jovens no ensino secundário e pós-secundário: modelo de análise 51
Quadro 6. Diplomados desempregados em cursos de requalificação para TICE: modelo de análise ... 51
Quadro 7. eSkills iniciativas ao nível europeu ... 114
Quadro 8. Boas Práticas em TICE a nível europeu, em curso (seleção) ... 117
Quadro 9. Boas Práticas e Experiências Educativas/Formativas, por instituição 126
Quadro 10. Outras iniciativas no âmbito da literacia e inclusão digitais e da educação/formação e mobilização para as TICE, Portugal ... 150

Índice de Tabelas

Tabela 1. Utilizadores de computador, internet e telemóvel, grupo etário dos 10 aos 15 anos, total e por gênero, em Portugal (2012) (%) ... 31
Tabela 2. Utilizadores frequentes de computador e internet e locais de acesso, grupo etário dos 10 aos 15 anos, em Portugal (2012) (%) ... 31
Tabela 3. Atividades realizadas pelos utilizadores de computador, grupo etário dos 10 aos 15 anos, em Portugal (2012) (%) ... 32
Tabela 5. Formas de aprendizagem de utilização de computador e internet, grupo etário dos 10 aos 15 anos, em Portugal (2012) (%) ... 33
Tabela 6. Utilizadores frequentes de internet e computador (usam diariamente), total e jovens, Portugal e UE28 (2014) (%) ... 33
Tabela 7. Utilizadores frequentes de internet e computador (usam diariamente), jovens e por gênero, Portugal e UE28 (2014) (%) ... 34
Tabela 8. Atividades na internet, jovens dos 16 aos 19 anos, Portugal e UE28 (2014) (%) 34
Tabela 10. Nível de competências no uso de internet e computador, total e jovens, Portugal e UE28 (2014) (%) ... 36
Tabela 11. Nível de competências no uso de internet e computador, jovens e por gênero, em Portugal (2014) (%) ... 38
Tabela 12. Escrever um programa de computador usando uma linguagem de programação especializada, total e jovens em Portugal (2014) (%) ... 38
Tabela 14. Resultados das provas finais do ensino básico e dos exames nacionais do ensino secundário, Portugal, 2015 ... 40
Tabela 15. Número de focus-groups realizados e de participantes (alunos/ formandos) 54
Índice de Gráficos

Gráfico 1. Número de inscritos em cursos superiores de TICE, por área de educação e formação, em Portugal (2004/05 a 2014/15) ... 11
Gráfico 3. Número de inscritos em cursos superiores de CTEM, por área de educação e formação, em Portugal (2004/05 a 2014/15) ... 13
Gráfico 4. Número de inscritos em CET de TICE no ensino superior, por área de educação e formação, em Portugal (2004/05 a 2014/15) .. 14
Gráfico 5. Número de inscritos em cursos de aprendizagem e cursos profissionais de TICE, por área de educação e formação, em Portugal (2012, 2013 e 2014) .. 15
Gráfico 7. Número de inscritos em cursos superiores de Audiovisuais e produção dos media, por género, em Portugal (2004/05 a 2014/15) .. 16
Gráfico 8. Número de inscritos em cursos superiores de CTEM, por área de educação e formação e género, em Portugal (2004/05 a 2014/15) ... 17
Gráfico 10. Alunos matriculados no ensino secundário, por orientação curricular (1) e sexo, em Portugal – Jovens (2000/01 – 2013/14) ... 19
Gráfico 13. Uso das TIC pelos professores em pelo menos 25% das aulas (% dos alunos, Portugal e EU, 2001-12) .. 29
Gráfico 14. Percentagem de alunos que usam TIC nas aulas para aprendizagem, pelo menos uma vez por semana (Portugal e EU, 2001-12) .. 29
Gráfico 15. Meios através dos quais os professores tiveram formação em TIC durante os últimos dois anos (por ano de escolaridade e em % dos alunos, Portugal e EU, 2011-12) 30
Gráfico 17. Número de iniciativas com maior MSP na área do desenvolvimento de competências digitais, por países .. 113
Gráfico 18. Número de iniciativas por públicos-alvo (13 países europeus) ... 116

Índice de Figuras

Índice de Caixas

Caixa 1. “Exploração de ambientes computacionais” na disciplina de TIC 8º ano 22
Caixa 2. Visão geral dos temas/ conteúdos da disciplina de Aplicações Informáticas, 12º ano,
Cursos Científico-Humanísticos ... 23
Caixa 3. Apps for Good International... 120
Caixa 4. Código inGenius – colaboração Escola-Mercado de Trabalho.. 120
Caixa 5. European Centre for Women and Technology (ECWTM) e algumas iniciativas em curso .. 123
Caixa 6. Associação Americana de Mulheres Universitárias (WWUC) “Empowering Women” .. 123
Caixa 8. Get Online Week .. 125
Caixa 9. Iniciação à Programação no 1ºciclo do Ensino Básico – Ministério da Educação 135
Caixa 10. “Conta-nos uma história” - Podcast na Educação ... 135
Caixa 11. Academia de Código - Júnior | Code for all ... 136
Caixa 12. Projeto educativo Apps For Good (AFG): projeto-piloto ... 136
Caixa 13. Concurso ONcontrol – Concurso de Desenvolvimento de Sistemas Microcontrolados,
Instituto Politécnico de Setúbal ... 136
Caixa 14. Iniciativas do Instituto Politécnico de Setúbal na área da inovação 140
Caixa 15. Cursos online de acesso livre UP2U – Instituto Politécnico de Leiria......................... 141
Caixa 16. Academia de Código | Code for all ... 143
Caixa 17. Instituto de Emprego e Formação Profissional - Assinatura de 25 acordos de
cooperação com instituições de ensino superior e parcerias com a Microsoft IT Academy 144
Caixa 18. Fundação Portuguesa das Comunicações junta-se à celebração do Dia das Jovens
Mulheres nas TIC - 23 de Abril de 2015... 149
Introdução

O estudo que aqui se apresenta - *Opção dos jovens por percurso educativos/formativos em TICE: Percepções, bloqueios e fatores facilitadores* –, realizado pela Fórum Estudante para a Coligação Portuguesa para a Empregabilidade Digital (CPED), pretende explorar novas perspetivas sobre o “skills gap” que persiste nas tecnologias de informação, comunicação e eletrónica (TICE).

No seguimento do anterior estudo já publicado em abril de 2015 - *Mapeamento da Oferta de Educação e Formação em TICE em Portugal* –, centramos agora a nossa atenção na procura de cursos e futuras carreiras em TICE, quer por parte dos jovens em momentos decisivos do seu percurso educativo, quer dos desempregados em fase de requalificação.

Exploram-se, com recurso a metodologias qualitativas de recolha de informação, nomeadamente *focus-groups*, as percepções e os estereótipos sobre o que é estudar e trabalhar nestas áreas, as razões da sua escolha ou não escolha, o papel da família, dos professores e dos pares nessas opções e as condicionantes do ponto de vista dos perfusos académicos e do sistema educativo. Avalia-se igualmente em que medida o potencial de empregabilidade nas TI pesa nessas decisões e dá-se especial atenção às dimensões de género e à necessidade de trazer mais mulheres para as TICE.

Procuram-se identificar fatores que podem facilitar, ou pelo contrário, bloquear estas opções e, assim, contribuir para a definição de estratégias superadoras da insuficiente procura de formação inicial em TICE ou motivadoras da requalificação, sobretudo junto de diplomados em situação de desemprego.

Para além desta dimensão, o estudo integra também outros dois eixos de análise complementares. Um mais centrado na oferta de educação e formação em TICE e que visa identificar experiências de sucesso na formação de mais alunos e na promoção da sua empregabilidade e ligação às empresas. Outro mais centrado na comunicação, sensibilização e orientação e que pretende recolher boas práticas na mobilização para cursos e carreiras nestas áreas. Destacam-se, nesta perspetiva, linhas de comunicação e de argumentação que valorizem as áreas de TICE junto dos jovens, nomeadamente na sua dimensão simbólica e de estatuto entre pares, e o papel que os Serviços de Psicologia e Orientação (SPO) das escolas podem ter na orientação vocacional.

Recorre-se, nestes dois eixos de análise, à recolha de informação documental disponível, no contexto nacional e internacional, em particular a nível europeu, sobre iniciativas que nalguns países se têm mostrado mais relevantes e inovadoras. Para o caso português, consideramos o leque de iniciativas públicas que tem vindo a ser implementado e recolhemos, junto de diversas instituições de ensino e formação que participaram neste estudo, experiências e práticas bem-sucedidas. Deste levantamento, foi possível identificar dezenas de iniciativas nacionais e internacionais, abrangentes e de natureza geralmente pública, para além de 46 boas práticas e experiências educativas de sucesso, diretamente promovidas ou participadas por algumas das instituições de ensino e formação que colaboraram no estudo.
Esta pesquisa suporta-se, assim, num vasto trabalho empírico, de natureza qualitativa e exploratória, mas que permitiu uma enorme riqueza de informação e de discussão. Foram realizados 43 focus-groups, entre outubro e novembro de 2015, envolvendo, no total, 487 alunos/ formandos em formação inicial, de vários ciclos e modalidades de ensino secundário e pós-secundário e, no segmento da formação contínua, diplomados em cursos de requalificação para as TICE. No âmbito da formação inicial, foram realizados focus-groups nomeadamente com jovens no 10º e 12º ano dos cursos científico-humanísticos do ensino secundário regular e com alunos do 1º ano de cursos profissionais e de cursos de aprendizagem, do secundário profissional, de CET e de cursos TeSP e de licenciaturas. Foram ainda realizados focus-groups com psicólogos dos SPO das escolas, com professores de TIC/ Informática e com pais e encarregados de educação, cujos educandos frequentam o ensino secundário.

Para delimitação da análise, consideram-se como cursos em TICE, os das Ciências Informáticas (CNAEF 481), Eletricidade e Energia (CNAEF 522), Eletrónica e Automação (CNAEF 523) e Audiovisuais e Produção dos Média (CNAEF 213). Foram ainda integrados no trabalho empírico, nomeadamente nos focus-groups; alunos e formandos que frequentam cursos de CTEM não-TICE (CNAEF 4 e 5, não incluídas nas anteriores) e alguns das restantes áreas de educação e formação, aqui denominadas por não-CTEM.

A realização deste número de focus-groups, com o envolvimento de tantos participantes, só foi possível devido à enorme e entusiástica colaboração que tivemos dos membros do Consórcio Maior Empregabilidade (CME) e da Rede Maior Empregabilidade – Ensino Profissional (RME-EP), ambos dinamizados pela Fórum Estudante, e de várias outras instituições de ensino e formação. Contámos, assim, com um extraordinário apoio de um leque muito diversificado de entidades, nomeadamente de várias escolas secundárias, centros de formação profissional, universidades e institutos politécnicos e do IEF, I.P., da Academia de Código e da Associação Nacional de Professores de Informática (ANPRI).

O estudo estrutura-se em cinco capítulos. No primeiro, procura-se fazer um enquadramento deste tema que, pelo seu interesse, abrangência e atualização, tem vindo a motivar grande debate académico e intervenção pública. A questão do potencial de ofertas de emprego nas TICE, não satisfeitas por carências de mão-de-obra, é hoje uma preocupação central a nível europeu, sobretudo num contexto de elevado desemprego jovem, e motivando também por isso uma intensa pesquisa empírica. Neste sentido, faz-se aqui um balanço detalhado desses contributos recorrendo, sempre que possível, a dados documentais e a indicadores estatísticos que permitam caracterizar e posicionar Portugal no contexto europeu. É dado destaque a temas como: a evolução, na última década, do número de inscritos em cursos de TICE em Portugal, no ensino superior e pós-secundário não superior, e a reduzida participação das mulheres nesses cursos; a forma como o ensino das TIC e da informática estão integrados nos currículos do ensino básico e secundário, a modernização tecnológica das escolas e a importância da formação e das atitudes dos professores na utilização das TIC e na sua integração nos processos de aprendizagem; a forma como crianças e jovens usam as TIC e como avaliam as suas competências digitais; e, finalmente, os requisitos de acesso ao ensino superior em TICE e as dificuldades estruturais em disciplinas nucleares, como a matemática e a física.
No segundo capítulo, delimita-se a pesquisa a fazer, nomeadamente os níveis, as modalidades e as áreas de educação e formação considerados. De seguida, no capítulo III são apresentados, para cada um dos eixos de análise, os modelos de pesquisa tidos como referência e as principais metodologias usadas para recolha e tratamento da informação, cujos guiaes constam dos anexos do estudo.

Os capítulos IV e V são inteiramente dedicados à análise da informação recolhida. No primeiro caso, à imensa informação que os *focus-groups* realizados com alunos/formandos nos permitiu recolher. A sua transcrição integral e posterior interpretação permitiram alimentar, em larga medida, os resultados que são apresentados e discutidos ao longo deste capítulo. Procuramos sistematizar, do ponto de vista dos alunos/formandos que entrevistámos nos vários segmentos de análise, aspectos que podem constituir fatores facilitadores ou de bloqueio na opção pelo estudo e trabalho em TICE. No caso do capítulo V, são elencadas e sucintamente apresentadas as inúmeras experiências e boas práticas que foi possível identificar a nível nacional e internacional.

É a partir desta extensa base de dados empíricos, ainda que iminentemente qualitativos e exploratórios, que nos é possível estruturar um conjunto de conclusões e de recomendações que esperemos poderem vir a ser úteis para a difícil mas necessária missão que a Coligação Portuguesa para a Empregabilidade Digital tem em mãos.
I. Enquadramento e relevância do tema

1. A evolução da procura de ensino e formação inicial em TICE em Portugal

Tomando como referência as áreas de formação em TICE, consideradas no estudo do mapeamento da oferta de educação e formação (Valente e Correia, 2015), mas recorrendo agora à evolução do número de inscritos na última década, quer em cursos superiores quer em CET no ensino superior, podemos, de facto, verificar a existência de volumes de procura e de dinâmicas muito distintas ao longo deste período.

O número de inscritos em cursos superiores de eletrónica e automação tem sido sempre bastante mais elevado do que o das restantes áreas (Gráfico 1) e tem-se mantido relativamente constante ao longo destes dez anos. A área da Eletricidade e energia assume um volume de inscritos menor e em declínio desde 2011/12, enquanto os cursos superiores de Audiovisuais e produção dos media registaram uma acréscimo de alunos, superando, a partir de 2010/11, o volume de inscritos em Ciências informáticas.

Gráfico 1. Número de inscritos em cursos superiores de TICE, por área de educação e formação, em Portugal (2004/05 a 2014/15)

Fonte: DGEEC e DGES, MEC. Tratamento dos autores.
Nota: Inscritos em todos os níveis de ensino superior, incluindo mobilidade; não foram incluídos os cursos Preparatórios de Licenciatura – 1º ciclo e Preparatórios de Mestrado Integrado e Complementos de Formação.
Tem sido, aliás, nas Ciências informáticas que o decréscimo da procura tem sido mais expressivo, comparativamente ao das outras áreas, e sobretudo a partir de 2010/11. De 2004/05, ano em que no período em análise se regista o maior número de alunos em cursos superiores de ciências informáticas, a 2014/15 houve uma redução de 37% do número de inscritos nesta área (Gráfico 2). Se em parte, esta redução é explicada pela dinâmica de diminuição da procura (nomeadamente de inscritos pela 1ª vez) no ensino superior, acompanhada por um ajustamento do número de vagas, ela refletirá certamente alguns dos bloqueios ao prosseguimento de estudos nesta área que com este estudo procuramos aprofundar.

Fonte: DGEEC e DGES, MEC. Tratamento dos autores.
Nota: Inscritos em todos os níveis de ensino superior, incluindo mobilidade; não foram incluídos os cursos Preparatórios de Licenciatura – 1º ciclo e Preparatórios de Mestrado Integrado e Complementos de Formação.

Observando a evolução dos inscritos em cursos superiores de CTEM, podemos verificar a expressão muito significativa das engenharias, mas com uma redução notória nos últimos anos – entre 2011/12 e 2014/15 registaram-se menos 11519 alunos em cursos de engenharia – enquanto a área das ciências se tem mantido praticamente constante ao longo deste período (Gráfico 3), embora com uma expressão muito mais elevada dos inscritos em cursos de ciências do que em matemática e informática.

É de notar que os inscritos em cursos de CTEM, no seu conjunto, representam cerca de 30% do total de inscritos no ensino superior em Portugal, dos quais 64% com formações não-TICE. Estes podem vir a constituir uma significativa reserva de recursos humanos qualificados, com uma sólida formação em disciplinas nucleares como a matemática e/ou a física, cujo potencial de requalificação para as áreas TICE será de equacionar sobretudo face à redução da empregabilidade nalgumas destas áreas e no caso da tendência de redução da procura de cursos em TICE, particularmente em Ciências Informáticas, não se inverter.
Já os CET no ensino superior nas áreas de TICE tem tido, ao longo dos últimos dez anos, uma evolução muito positiva, registo um acréscimo significativo do número de inscritos, ainda que irregular (Gráfico 4). Esta evolução reflete, por um lado, a natureza destes cursos, com uma forte orientação prática para áreas tecnológicas e, por outro lado, a progressiva afirmação e atratividade desta oferta na formação de quadros intermédios e como via de acesso a estudos superiores, o que tenderá a afirmar-se com a transição para os cursos TeSP, os quais, este ano letivo (2015/16), já substituem os CET na oferta dos institutos politécnicos.

Note-se que, contrariamente ao ensino superior, o volume de inscritos em CET de Ciências Informáticas tem sido sempre superior ao das outras áreas e em crescimento ao longo de toda a década, mesmo nos últimos anos. Esta oferta tem vindo, assim, a constituir um via mais acessível para os alunos que pretendem continuar os seus estudos neste domínio, alguns provenientes de cursos de dupla certificação no ensino secundário na mesma área de formação, outros procurando uma formação mais prática e que lhes permita uma entrada mais rápida no mercado de trabalho. Em todo o caso, tem assumido um importante papel na prosseguimento de estudos para o ensino superior em ciências informáticas e ou áreas relacionadas.
Uma vez que, relativamente à oferta de cursos de dupla certificação no ensino secundário, não dispomos de dados para o mesmo período de análise (2004/05 – 2014/15), recuperamos aqui a informação trabalhada no estudo anterior (Valente e Correia, 2015) para os últimos três anos disponíveis à data (2012 a 2014).

Como se pode ver no Gráfico 5, em 2014, estavam inscritos cerca de 15300 jovens em cursos de aprendizagem e cursos profissionais nas áreas de TICE, grande parte destes em cursos profissionais de Ciências Informáticas. Este volume de inscritos representa quase o dobro do registado no ano anterior, refletindo, mais do que um acréscimo da procura por formações em TICE, também uma rápida capacidade de ajustamento desta oferta àquelas que são as prioridades em termos de expressão do ensino profissional no secundário, de áreas de aposta estratégica e de cumprimento da escolaridade obrigatória. Entre 2012 e 2014, os cursos de aprendizagem e os cursos profissionais registaram dinâmicas muito diferentes, com uma redução dos primeiros e um aumento muito significativo dos segundos no volume de inscritos, sobretudo em ciências informáticas.
2. A reduzida participação das mulheres no ensino e formação inicial em TICE

O número de mulheres que escolhe estudar e trabalhar em TICE continua a ser muito reduzido, apesar da evolução muito positiva, e acima da registada pelos homens, da participação das mulheres no ensino superior e no número de diplomados. A distribuição das mulheres pelas áreas de educação e formação é muito diferenciada, registando-se uma proporção muito inferior à dos homens em áreas TICE e das engenharias em geral, ainda que em algumas das ciências que compõem as formações em CTEM as mulheres estejam tão ou mais bem representadas do que os homens.

No conjunto dos cursos superiores em TICE aqui considerados, importa, no entanto, destacar algumas diferenças. Com efeito, o número de alunas inscritas em cursos de Ciências Informáticas tem sido sempre muito inferior ao dos homens (Gráfico 6). Em 2014/15 não chega a 20% do total de inscritos nestes cursos. Por outro lado, esse número tem vindo a reduzir-se ao longo dos últimos dez anos. Em 2004/05, estavam inscritas em cursos superiores de ciências informáticas cerca de 2000 alunas. Passados dez anos, esse número não chega a mil alunas.

Gráfico 7. Número de inscritos em cursos superiores de Audiovisuais e produção dos media, por género, em Portugal (2004/05 a 2014/15)

Fonte: DGEEC e DGES, MEC. Tratamento dos autores.
Nota: Inscritos em todos os níveis de ensino superior, incluindo mobilidade; não foram incluídos os cursos Preparatórios de Licenciatura – 1º ciclo e Preparatórios de Mestrado Integrado e Complementos de Formação.

No entanto, se considerarmos, em particular, a área de Audiovisuais e produção dos media, a proporção de mulheres inscritas em cursos superiores é muito mais equiparada à dos homens, sobretudo nos últimos anos (Gráfico 7).
Nota: Inscritos em todos os níveis de ensino superior, incluindo mobilidade; não foram incluídos os cursos Preparatórios de Licenciatura – 1º ciclo e Preparatórios de Mestrado Integrado e Complementos de Formação.

Nas áreas de CTEM podemos, mais uma vez, observar diferenças significativas. Enquanto nas engenharias, o peso das mulheres inscritas em cursos superiores têm-se mantido sempre muito inferior ao dos homens, nas ciências tem sido, pelo contrário, muito equiparado, ainda que em resultado da maior expressão das mulheres nalguns ramos das ciências do que noutros.

Curiosamente se observarmos o número de inscritos em CET em Ciências Informáticas e Audiovisuais e produção dos media (Gráfico 9), a discrepância entre gêneros é ainda mais expressiva e mesmo nos cursos de Audiovisuais, em que o número de alunas é, neste caso, muito reduzido face ao dos alunos rapazes. Este dado pode dever-se, em larga medida, à natureza desta oferta, com uma forte orientação prática e para a inserção no mercado de trabalho, o que contraria a aparente expetativa e preferência das raparigas pelas vias e pelas modalidades de ensino orientadas para o prosseguimento de estudos.

Gráfico 8. Número de inscritos em cursos superiores de CTEM, por área de educação e formação e género, em Portugal (2004/05 a 2014/15)

Fonte: DGEEC e DGES, MEC. Tratamento dos autores.
Nota: Inscritos em todos os níveis de ensino superior, incluindo mobilidade; não foram incluídos os cursos Preparatórios de Licenciatura – 1º ciclo e Preparatórios de Mestrado Integrado e Complementos de Formação.

![Gráfico 9](image)

Fonte: DGEEC e DGES, MEC. Tratamento dos autores.
Nota: Insritos em todos os níveis de ensino superior, incluindo mobilidade; não foram incluídos os cursos Preparatórios de Licenciatura – 1º ciclo e Preparatórios de Mestrado Integrado e Complementos de Formação.

Embora não tenhamos dados detalhados para a evolução do número de inscritos nas ofertas de ensino secundário em TICE, por género, é interessante verificar a menor participação das mulheres, de uma forma geral, nas modalidades de ensino secundário vocacional, relativamente aos homens e, pelo contrário, a sua maior participação no ensino secundário geral (Gráfico 10).

Gráfico 10. Alunos matriculados no ensino secundário, por orientação curricular (1) e sexo, em Portugal – Jovens (2000/01 – 2013/14)

![Gráfico 10](image)

(1) Geral: Cursos científico-humanísticos e geral de ensino regular; Vocacional: Cursos tecnológicos de ensino regular, cursos profissionalizantes, cursos de aperfeiçoamento (a partir de 2005/06), outros vocacionais (a partir de 2011/12) e os cursos CRIF.
Para além destas diferenças, é interessante notar como a sub-representação das mulheres na formação superior em TICE, nomeadamente naquelas que se poderão considerar como as suas áreas mais hard, tem persistido ao longo do tempo, apesar do elevado desempenho educativo e da progressão académica que as mulheres registam. Não sendo certamente estes os fatores principais que inibem a escolha de cursos em TICE, para prosseguimento de estudos, por parte das raparigas, importará explorar outras razões para isso aconteça, o que, aliás, tem sido objeto de ampla discussão académica e de crescente intervenção política.

Com efeito, dispor de mais mulheres, jovens e qualificadas, em cursos e empregos em TICE é já hoje encarado como indispensável ao desenvolvimento futuro deste sector, não apenas do ponto de vista do capital humano necessário, mas também da igualdade de género. Os dados para Portugal, disponibilizados pelo Ponto Nacional de Contacto da ECWT - European Center for Women & Technology e pela Associação Women in Tech revelam bem o significativo “gender bias” que caracteriza o sector das TIC: no total de emprego em TIC, apenas 1/3 são mulheres; se considerarmos os empregos de Programação, esta percentagem baixa para 11% e se considerarmos os cargos de gestão e administração nas empresas do sector, apenas 5% são ocupados por mulheres. O facto de as mulheres estarem particularmente sub-representadas em funções técnicas e de gestão é também evidente a nível europeu. Apenas 19,2% dos trabalhadores no sector das TIC têm chefias mulheres, comparado com 45,2% noutros sectores de atividade. Por outro lado, o número de mulheres empreendedoras em TIC é também mais baixo do que noutros sectores (19,2% face a 31,3%) (EC, 2013a).

3. O ensino das TIC e da informática no ensino básico e no secundário geral

O ensino das TIC está integrado no 3º ciclo do ensino básico. “A disciplina de Tecnologias de Informação e Comunicação inicia-se no 7.º ano de escolaridade, garantindo aos alunos mais jovens uma utilização segura e adequada dos recursos digitais e proporcionando condições para um acesso universal à informação, funcionando sequencialmente nos 7.º e 8.º anos, semestral ou anualmente, em articulação com uma disciplina criada pela escola, designada por oferta de escola”¹.

As metas curriculares para a disciplina de Tecnologias de Informação e Comunicação nos 7º e 8º anos, introduzidas no ano letivo de 2014/15² estruturam-se em quatro domínios - Informação; Produção; Comunicação e Colaboração; Segurança - sendo que este último é abordado de forma transversal aos outros domínios. Estão contemplados também três subdomínios - Dados e estatísticas; Imagem e vídeo; Sítios na Internet - de abordagem não obrigatória, mas que poderão ser selecionados, em cada ano letivo, pelo professor em função da avaliação diagnóstica e do ritmo de trabalho alcançado pelos alunos. A disciplina assume-se com um caráter eminentemente prático, em que “metodologias associadas ao trabalho de projeto, à resolução de problemas e à construção de portefólios deverão prevalecer no contexto de trabalho em sala de aula” (Horta, Mendonça e Nascimento, 2012: 3).

¹ Decreto-Lei n.º 139/2012 de 5 de julho, Diário da República, 1.ª série — N.º 129 — 5 de julho de 2012.
O tempo letivo dedicado à disciplina de TIC no ensino básico é, contudo, limitado e aparentemente variável. A carga horária semanal, expressa em minutos, afeta à área disciplinar de “Expressões e Tecnologias”, na qual a disciplina de TIC se integra, é de 300 minutos para 7º ano, 300 para o 8º ano e 250 para o 9º ano de escolaridade, sendo que “fica ao critério de cada escola a distribuição dos tempos pelas diferentes disciplinas de cada área disciplinar, dentro dos limites estabelecidos - mínimo por área disciplinar e total por ano ou ciclo” e que do total da carga horária prevista no 7º e 8º ano para “Expressões e Tecnologias”, tenham que ficar, no mínimo, 90 minutos para Educação Visual (Anexo 1).

É, no entanto, de notar que a matriz curricular do 1º ciclo do ensino básico (1º e 2º anos e 3º e 4º anos) prevê, como uma das componentes do currículo, a “oferta complementar”, com 1 hora de carga semanal atribuída, na qual são integráveis, “atividades a desenvolver em articulação, integrando ações que promovam, de forma transversal, a Educação para a cidadania e componentes de trabalho com as tecnologias de informação e comunicação”. Na matriz curricular do 2º ciclo do ensino básico, esta componente de “oferta complementar” está igualmente prevista e é de “frequência obrigatória para os alunos, desde que criada pela escola, em função da gestão do crédito letivo disponível, nos termos do artigo 12.º”, artigo esse que prevê que “as escolas dos 2.º e 3.º ciclos podem oferecer componentes curriculares complementares com carga horária flexível que contribuam para a promoção integral dos alunos em áreas de cidadania, artísticas, culturais, científicas ou outras”.

Com efeito, ainda que havendo, a possibilidade de dedicar mais tempo ao ensino das TIC e de o fazer mais cedo, ao longo do 1º e 2º ciclo do ensino básico, no âmbito da “oferta complementar”, essa possibilidade parece ficar, nalguns casos, muito dependente das opções e dos recursos das próprias escolas. Outra questão importante é a forma como a própria formação em TIC é integrada, ou não, na formação de base das crianças e jovens e como as tecnologias têm vindo a suportar abordagens pedagógicas inovadoras (EC, 2013b). Reconhece-se, de uma forma geral, que as TIC aplicadas ao ensino podem ter um enorme potencial na motivação dos jovens e na qualidade das aprendizagens. Contudo, de acordo com o estudo da Eurydice (Eurydice, 2012:3) a integração das TIC nos currículos, e de uma forma transversal às disciplinas, ou o desenvolvimento das competências digitais em disciplinas de matemática, ciência e línguas são ainda limitados na Europa.

Por outro lado, têm sido várias as experiências de explorar a programação ao longo do percurso escolar de crianças e jovens. O ensino da programação nas escolas visa essencialmente desenvolver as capacidades de pensamento lógico e de resolução de problemas, fundamentais à aprendizagem de outras disciplinas, mas também procura atrair mais alunos para as ciências informáticas, desmitificando a dificuldade destas formações. Segundo um inquérito a 20 países da UE (EC, 2014a) são vários os países em que a programação já faz parte dos currículos, como disciplina obrigatória ou opcional, na maior parte dos casos integrada no ensino secundário e na formação em TIC. Em Portugal, são também várias as iniciativas implementadas pela Direção Geral

de Educação (MEC), nomeadamente através da intervenção da Equipa de Recursos e Tecnologias Educativas (ERTE), responsável pela conceção, implementação e avaliação de iniciativas mobilizadoras da utilização efetiva das Tecnologias de Informação e Comunicação (TIC) em todos os níveis de educação e de ensino. São de destacar algumas das atividades em curso particularmente dirigidas ao ensino da programação nas escolas: “1º Ciclo. Iniciação à Programação”, “Clubes de programação e robótica” e “APPS FOR GOOD”.

A disciplina de TIC no 3º ciclo do ensino básico, nesta nova conceção introduzida pelas metas curriculares, procura também ir “para além do desenvolvimento das literacias digitais básicas e avança para o domínio do desenvolvimento das capacidades analíticas dos alunos, através da exploração de ambientes computacionais apropriados à sua idade” (Horta, Mendonça e Nascimento, 2012: 2). Neste sentido, no âmbito do domínio “Produção”, no 8º ano, está prevista a “Exploração de ambientes computacionais” (Caixa 1).

Caixa 1. “Exploração de ambientes computacionais” na disciplina de TIC 8º ano

1. Criar um produto original de forma colaborativa e com uma temática definida, com recurso a ferramentas e ambientes computacionais apropriados à idade e ao estádio de desenvolvimento cognitivo dos alunos, instalados localmente ou disponíveis na Internet, que desenvolvam um modo de pensamento computacional, centrado na descrição e resolução de problemas e na organização lógica das ideias.

 1. Identificar um problema a resolver ou conceber um projeto desenvolvendo perspetivas interdisciplinares e contribuindo para a aplicação do conhecimento e pensamento computacional em outras áreas disciplinares (línguas, ciências, história, matemática, etc.);
 2. Analisar o problema e decompô-lo em partes;
 3. Explorar componentes estruturais de programação (variáveis, estruturas de decisão e de repetição, ou outros que respondam às necessidades do projeto) disponíveis no ambiente de programação;
 4. Implementar uma sequência lógica de resolução do problema, com base nos fundamentos associados à lógica da programação e utilizando componentes estruturais da programação;
 5. Efetuar a integração de conteúdos (texto, imagem, som e vídeo) com base nos objetivos estabelecidos no projeto, estimulando a criatividade dos alunos na criação dos produtos (jogos, animações, histórias interativas, simulações, etc.).
 6. Analisar e refletir sobre a solução encontrada e a sua aplicabilidade e se necessário, reformular a sequência lógica de resolução do problema, de forma colaborativa;
 7. Respeitar os direitos de autor e a propriedade intelectual da informação utilizada;
 8. Partilhar o produto produzido na Internet.

No ensino secundário, no âmbito dos cursos científico-humanísticos, a disciplina de Aplicações Informáticas B constitui uma opção para os quatro cursos científico-
humanísticos - Ciências e Tecnologias, Ciências Socioeconómicas, Línguas e Humanidades e Artes Visuais - no 12º ano de escolaridade enquanto uma das “duas disciplinas anuais (12.º ano), a escolher de entre as opções de cada curso” sendo que pelo menos uma dessas disciplinas seja obrigatoriamente do conjunto de opções (b), ou seja, do conjunto de disciplinas nucleares da formação específica do curso. A disciplina de Aplicações Informáticas B faz parte do leque de opções (c) do 12ºano de escolaridade, considerada como “oferta dependente do projeto educativo de escola” (Anexo 2). Assim sendo, para além de a disciplina ser opcional no 12º ano, nem sempre essa opção fará parte da oferta da escola, ou mesmo quando faz, poderá não estar disponível para os alunos do 12º ano de escolaridade de todos os cursos.

O programa da disciplina de Aplicações Informáticas B, procura ser “um complemento de formação nesta área, que visa direcionar os saberes dos alunos para aplicações e conhecimentos que sirvam como pré-requisitos adicionais para um prosseguimento de estudos” (Mildred João et al., 2009: 3), estruturando-se em três áreas de saber: Programação, como modelo de estruturação de situações-problema passíveis de digitalização; Interatividade, como conceptualização de modelos; Multimédia, como conceção e operacionalização de soluções (Caixa 2) (Mildred João et al., 2009: 8). Assume-se que a disciplina deverá ter um caráter predominantemente prático e experimental, com a aplicação contextualizada de conteúdos, pesquisa e resolução de problemas e experimentação de técnicas e soluções.

Caixa 2. Visão geral dos temas/ conteúdos da disciplina de Aplicações Informáticas, 12º ano, Cursos Científico-Humanísticos

<table>
<thead>
<tr>
<th>• UNIDADE 1 – INTRODUÇÃO À PROGRAMAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introdução</td>
</tr>
<tr>
<td>Conceitos fundamentais</td>
</tr>
<tr>
<td>Teste e controlo de erros em algoritmia – tracing</td>
</tr>
<tr>
<td>Estruturas de controlo</td>
</tr>
<tr>
<td>Arrays</td>
</tr>
<tr>
<td>Subrotinas</td>
</tr>
<tr>
<td>Introdução à programação orientada aos eventos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• UNIDADE 2 – INTRODUÇÃO À TEORIA DA INTERACTIVIDADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do GUI aos ambientes imersivos</td>
</tr>
<tr>
<td>Realidade virtual</td>
</tr>
<tr>
<td>O conceito de interatividade</td>
</tr>
<tr>
<td>Características ou componentes da interatividade</td>
</tr>
<tr>
<td>Níveis e tipos de interatividade</td>
</tr>
<tr>
<td>Como avaliar soluções interativas</td>
</tr>
<tr>
<td>O desenho de soluções interativas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• UNIDADE 3 – CONCEITOS BÁSICOS MULTIMÉDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipos de media</td>
</tr>
<tr>
<td>Conceito de multimédia</td>
</tr>
<tr>
<td>Modos de divulgação de conteúdos multimédia</td>
</tr>
</tbody>
</table>

O programa prevê, na unidade 1, a introdução à programação que “pretende, sobretudo, capacitar os alunos com modelos de análise necessários a uma lógica de apreciação digital das situações e dos problemas que lhes são colocados” (Mildred João et al., 2009: 3). Segundo os autores do programa, a unidade de programação tem duas finalidades distintas mas relacionadas. Por um lado, desenvolver o pensamento lógico, com regras estruturadas, perante a necessidade de solucionar problemas operacionais. Por outro lado, visualizando o resultado desse pensamento “permite fazer uma aproximação de causa-efeito que é sempre útil quando se fazem aprendizagens de caráter operativo, nomeadamente quando se procuram soluções integradas de várias componentes como são manifestamente as soluções multimédia” (Mildred João et al., 2009:8)

Com efeito, apesar do ensino das TIC estar integrado nos currículos do ensino básico e secundário em Portugal, enquanto disciplina, as condicionantes desta oferta – a carga letiva que lhes é atribuída, o seu carácter opcional no 12º ano de escolaridade, as opções de organização das escolas e a disponibilidade de recursos para o efeito - podem limitar quer a motivação para, quer a progressão das aprendizagens dos alunos.

Como foi amplamente referido pelos professores de TIC/ Informática que entrevistámos, o gap ou o carácter descontínuo da oferta desta disciplina, ao longo dos vários ciclos de ensino, constituem um importante fator de inibição das escolhas dos alunos, e de futuro prosseguimento de estudos nestas áreas – “as escolhas são feitas em função daquilo que conhecem ou não” -, para além de limitar o desenvolvimento de competências digitais em domínios mais exigentes, como seja, nomeadamente o da programação - “e depois no secundário eles têm a possibilidade, se escolherem uma opção que é no 12º ano, que se chama Aplicações Informáticas B. Na verdade, eles têm uma introdução à programação. A altura em que é introduzida é demasiado tarde”. Referem, por outro lado, que no secundário “a única opção para conhecer alguma coisa de informática é realmente escolher um curso profissional”, opção que não é a via de preferência para muitos dos alunos e que, mesmo quando o é, tem revelado a existência de dificuldades nos módulos/ disciplinas de programação, em resultado, na opinião destes professores, quer da falta de bases dos alunos em domínios como a matemática e a lógica, quer da insuficiência do ensino de iniciação à programação mais cedo.

“A informática necessita de ser encarada como uma tecnologia transversal e indispensável e as competências em TIC como uma literacia, tão fundamental como as outras, na formação das crianças e jovens”. De facto, a continuidade do ensino das TIC
e uma maior progressão destas aprendizagens ao longo do percurso educativo favoreceriam certamente a construção de vocações, o despiste de interesses futuros e até uma noção mais realista dos que é a informática, para além da forma essencialmente lúdica com que a geração “digital native” encara o uso das TIC: “…se calhar estamos a passar a imagem errada de como é realmente a área científica ou o ramo da engenharia […]”. Eles são bons, mas ter TIC no 7º ano e no 8º ano não é a mesma coisa que depois ir para um curso de informática”. Esta imagem pouco clara do que é a informática é, segundo alguns dos professores entrevistados, também evidente entre os pais, que tendem a sobrevalorizar os conhecimentos dos filhos neste domínio - “[…]’ele tem muito jeito’…e é o jeito para ir à internet, para instalar jogos e como consegue fazer coisas que o pai não consegue, os miúdos crescem a ouvir que têm muito jeito para essas áreas” – gerando, nalguns casos, percepções desfasadas e expetativas goradas relativamente à aprendizagem da informática ou ao seu uso numa perspetiva que vai para além do utilizador, ainda que intensivo e frequente. Aliás, como sublinha a CE, há uma “grande diferença entre ser ‘digital native’ e ‘digitally competent’, i.e. ser capaz de usar as TIC de uma forma profissional, colaborativa, crítica e criativa” (EC, 2012).

4. Recursos TIC na escola e formação e atitudes dos professores

A modernização tecnológica das escolas tem sido evidente em Portugal. No estudo de diagnóstico sobre a modernização tecnológica do ensino em Portugal, realizado em 2008 (AT Kearney e GEPE, 2008), no âmbito da preparação dos projetos do Plano Tecnológico da Educação (PTE)⁷, já se salientava a evolução significativa que tinha sido feita, nos 5 anos anteriores, nos indicadores de dotação tecnológica das escolas, nomeadamente no número de alunos por computador e no rácio alunos por computador com acesso à internet.

Se observarmos a evolução destes indicadores em Portugal, ao longo da última década, podemos verificar que ambos os indicadores registaram uma trajetória muito positiva. Em 2013/14, a relação era de 3,5 alunos por computador com ligação à internet, face a 33,8 em 2001/02, e de 3 alunos por computador, face a 17,3 em 2001/02, nas escolas dos ensinos básico e secundário regular, em Portugal continental (Gráfico 11).

Gráfico 11. Relação alunos/ computador e relação alunos/ computador com ligação à internet, em escolas dos ensinos básico e secundário regular, no Continente (2001/02 - 2013-14)
Fonte: DGEEC, DSEE e DEEBS, 2015.

Mas este estudo avaliava não apenas o grau de acesso a tecnologias e conteúdos, ainda à data com insuficiências significativas, mas também outros fatores decisivos para a modernização tecnológica do ensino, como sejam as competências e a motivação dos docentes e não docentes. Com base neste modelo de análise — Acesso, Competências e Motivação — destacava-se então que as competências constituíam a segunda principal barreira em Portugal (Figura 1 e Gráfico 12).

Fonte: AT Kearney e GEPE, 2008: 22.
Salientava-se o esforço significativo na formação de docentes e alunos, com a instituição de módulos de formação em tecnologia para docentes (frequentados por mais de 30 000 docentes por ano) e a criação das disciplinas TIC. Não obstante, a falta de qualificações dos professores era ainda apontada como uma forte barreira à utilização das TIC em ambiente escolar. Observava-se que mesmo em escolas bem equipadas e cujos agentes tinham formação adequada, a utilização das TIC enfrentava normalmente alguma resistência por parte de alguns docentes, motivada quer pelo ceticismo em relação aos benefícios da sua utilização no ensino, quer pela alteração de rotinas que implica e pelo acréscimo de tempo e de esforço de preparação que exige. Os docentes com mais anos de serviço eram, em média, mais céticos em relação aos benefícios associados às TIC e mais resistentes à sua utilização.

No que diz respeito aos alunos, sugeria-se “acelerar a formação em tecnologia, antecipando no tempo o contacto dos alunos com as ferramentas básicas TIC (2º ciclo ou eventualmente 1º ciclo como oferta de enriquecimento curricular) e assegurando que a utilização das TIC não está confinada a disciplinas específicas, mas que faz parte do dia-a-dia da escola e do método de aprendizagem de todas as disciplinas” (AT Kearney e GEPE, 2008: 12).

Por último, evidenciava-se ainda a necessidade de reforçar o apoio às escolas na manutenção, atualização e disseminação da infraestrutura tecnológica, tarefas que eram em grande parte das escolas inquiridas efetuadas por professores, nomeadamente pelos professores de TIC/Informática. Este aspeto voltou a ser referido pelos professores de TIC/Informática que entrevistámos neste estudo, destacando-se nomeadamente as limitações de tempo letivo e de especialização exigidas por estas atividades.

De acordo com o estudo da EACEA e da Eurydice (2011), sobre a aprendizagem e a inovação através das TIC nas escolas da Europa, todos os países têm estratégias nacionais que visam acelerar a utilização das TIC na educação. Estas estratégias têm geralmente como objetivo desenvolver a literacia digital dos alunos, no ensino básico e secundário, assim como fornecer formação na área das TIC para professores.

O desenvolvimento de competências digitais é normalmente incluído nos currículos nacionais. O ensino das TIC permanece como uma disciplina separada num vasto grupo de países ao nível do ensino secundário (CITE 2 e 3), mas o conteúdo das TIC é também cada vez mais incorporado no currículo como forma de desenvolver competências específicas ou gerais noutras disciplinas. A literacia digital é lecionada, principalmente, por professores especialistas em TIC no nível secundário (CITE 2 e 3), mas em aproximadamente 50% dos países é, também, lecionada por professores especialistas noutras disciplinas, tais como a matemática e as ciências. Em muitas escolas, a utilização das TIC não se limita à comunicação diária de informação, visando também a promoção do envolvimento das famílias e da aprendizagem fora do contexto de sala de aula, nomeadamente em atividades extracurriculares.

Embora não exista uma grande disparidade entre as escolas na Europa relativamente à disponibilidade de equipamento TIC, dispondo estas, na generalidade, de infraestruturas satisfatórias que permitem a utilização destas tecnologias em todas as disciplinas e por todos os alunos, persistem algumas dificuldades.
A utilização que os professores fazem dos computadores na sala de aula, apesar de crescente, constitui ainda uma área que requer maior desenvolvimento, nomeadamente procurando-se uma maior integração das TIC no processo de ensino-aprendizagem. De acordo com o estudo da EACEA e da Eurydice (2011), os professores de cerca de metade da população estudantil na Europa não encorajam a utilização das TIC, quer no desenvolvimento de outras literacias fundamentais, quer nos processos de avaliação, em geral. Nomeadamente nas aulas de matemática e das ciências ou nas aulas de língua materna e de línguas estrangeiras, há ainda um recurso limitado às TIC. Refere-se que, em muitos países, os computadores não estão acessíveis aos estudantes nas salas de aula, mas localizados em salas de informática onde podem ser usados sob a supervisão de um professor e durante umas horas específicas, aspeto que também limita a sua utilização mais generalizada.

Por outro lado, são também comuns as dificuldades das escolas na atualização do equipamento e de softwares, no apoio técnico e na utilização de softwares interativos e de materiais educativos disponíveis online. Finalmente, a formação contínua e o apoio regular aos professores é necessária para se manterem atualizados neste domínio. Embora os professores normalmente adquiram competências de ensino na área das TIC na sua formação inicial, a sua formação profissional contínua é menos comum.

Um estudo mais recente da European Schoolnet e da University of Liège (2013), sobre o acesso, o uso, as competências e as atitudes dos alunos e dos professores relativamente às TIC na escola, em 31 países europeus (EU27, HR, ICE, NO e TR), continua a revelar que apesar da disponibilidade de recursos em TIC e do seu uso nas escolas europeias estar a melhorar, alguns destes obstáculos persistem.

A insuficiência de recursos disponíveis ainda é encarada pela maioria dos professores inquiridos como o principal obstáculo ao seu uso. Contudo, com base nos dados dos inquéritos realizados, não foi encontrada uma relação entre níveis mais elevados de recursos tecnológicos nas escolas e o uso, a confiança e as atitudes dos professores e alunos face às TIC.

A maioria dos professores usa as TIC para preparar as aulas, mas o seu uso para a aprendizagem em sala de aula é ainda pouco frequente. Do mesmo modo, também as atividades de aprendizagem dos alunos em casa com recurso a TIC são mais frequentes do que na escola. Segundo os autores, este facto afeta a confiança dos alunos nas suas competências digitais. Por outro lado, são os professores mais confiantes no uso das TIC que as usam mais frequentemente em sala de aula, nos vários níveis de ensino, e mesmo quando as escolas não dispõem de níveis de equipamento e de acesso elevados. Também são os professores mais confiantes no uso das TIC que mais participam em atividades de desenvolvimento profissional e que dedicam mais tempo a formação em TIC, sendo, no entanto, de notar que, a formação de professores em TIC raramente é obrigatória nestes países e a maior parte dos professores fá-la de modo informal e a título privado.

Tal como se conclui no estudo, o nível de confiança no uso das TIC e a formação de professores parece ser decisiva para tirar partido dos recursos tecnológicos que estão hoje, cada vez mais, disponíveis nas escolas: “boosting teacher professional development makes a difference, and appears to be a condition for an effective and
efficient use of the available infrastructure” (European Schoolnet e University of Liège, 2013: 14).

Os dados deste estudo para Portugal (European Schoolnet e University of Liège, 2012) mostram que a frequência do uso das TIC em aula, por professores e alunos está muito equiparada à média europeia, nalguns casos sendo até superior, nomeadamente no 8º ano e no 11º ano de escolaridade em cursos secundários profissionais (Gráfico 13 e Gráfico 14), anos e modalidades de educação em que o ensino das TIC e o recurso a estas tecnologias são mais intensivos.

Gráfico 13. Uso das TIC pelos professores em pelo menos 25% das aulas (% dos alunos, Portugal e EU, 20011-12)

![Gráfico 13](image)

Fonte: European Schoolnet e University of Liège, 2012: 10.

Gráfico 14. Percentagem de alunos que usam TIC nas aulas para aprendizagem, pelo menos uma vez por semana (Portugal e EU, 20011-12)

![Gráfico 14](image)

Fonte: European Schoolnet e University of Liège, 2012: 11.
Os níveis de confiança no uso das TIC, reportados pelos professores e pelos alunos inquiridos em Portugal, são geralmente mais elevados do que a média europeia. No que respeita ao desenvolvimento profissional dos professores neste domínio, mais de 70% dos alunos estão em escolas em que os professores tiveram mais de 6 dias de formação em TIC nos dois anos anteriores ao inquérito, valores aliás muito acima daqueles que o estudo aponta para as médias europeias, em qualquer dos anos de escolaridade considerados. Embora, segundo estes dados, o acesso à formação contínua em TIC por parte dos professores seja significativo, importa ter em conta que mais de 70% dos professores o fez através de aprendizagem pessoal e fora do horário de trabalho, como se pode verificar no Gráfico 1, o que é coincidente com a informação recolhida no âmbito deste estudo junto de professores de TIC/Informática.

Gráfico 15. Meios através dos quais os professores tiveram formação em TIC durante os últimos dois anos (por ano de escolaridade e em % dos alunos, Portugal e EU, 2011-12)

5. **As competências digitais dos jovens**

A competência digital é considerada uma competência-chave, fundamental para a aprendizagem ao longo da vida, e que deve estar garantida até ao final do ensino secundário. Como está definida no referencial europeu “A competência digital envolve a utilização segura e crítica das tecnologias da sociedade da informação no trabalho, nos tempos livres e na comunicação. É sustentada pelas competências em TIC: o uso do computador para obter, avaliar, armazenar, produzir, apresentar e trocar informações e para comunicar e participar em redes de cooperação via Internet” (EC, 2006).
O desenvolvimento das competências digitais das crianças e jovens é também uma dimensão fundamental a ter em conta quando se discutem as razões da insuficiente motivação e procura pelas formações em TICE. A frequência e o modo como usam, e encaram, as tecnologias de comunicação e informação no seu quotidiano, tão intensiva e familiarmente, torna-os utilizadores atentos e curiosos mas não necessariamente competentes ou interessados na descoberta de como estas tecnologias funcionam.

De acordo com os dados disponíveis, relativos a 2012, quase todas as crianças, rapazes ou raparigas, dos 10 aos 15 anos em Portugal utilizam computadores, internet e telemóveis (Tabela 1), o que é não apenas uma característica desta geração, como também uma indicação do acesso generalizado que a maioria das famílias tem hoje a estes recursos.

Tabela 1. Utilizadores de computador, internet e telemóvel, grupo etário dos 10 aos 15 anos, total e por género, em Portugal (2012) (%)

<table>
<thead>
<tr>
<th></th>
<th>Computador</th>
<th>Internet</th>
<th>Telemóvel*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (10-15 anos)</td>
<td>98</td>
<td>95</td>
<td>92</td>
</tr>
<tr>
<td>Masculino</td>
<td>98</td>
<td>95</td>
<td>n.d.</td>
</tr>
<tr>
<td>Feminino</td>
<td>98</td>
<td>95</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Grande parte utiliza computador e internet “todos os dias ou quase todos os dias” e sobretudo em casa. Mais de 90% usa computador e internet em casa enquanto, na escola, esta percentagem, ainda que muito expressiva, é menor: 69% das crianças dos 10-15 anos utiliza computador na escola e 65% usa a internet (Tabela 2).

Tabela 2. Utilizadores frequentes de computador e internet e locais de acesso, grupo etário dos 10 aos 15 anos, em Portugal (2012) (%)

<table>
<thead>
<tr>
<th>Locais de utilização</th>
<th>Frequência de utilização*</th>
<th>Computador</th>
<th>Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casa</td>
<td>Todos ou quase todos os dias</td>
<td>69</td>
<td>63</td>
</tr>
<tr>
<td>Escola</td>
<td></td>
<td>69</td>
<td>65</td>
</tr>
<tr>
<td>Casa de familiares, vizinhos ou amigos</td>
<td></td>
<td>55</td>
<td>49</td>
</tr>
<tr>
<td>Bibliotecas</td>
<td></td>
<td>13</td>
<td>9</td>
</tr>
</tbody>
</table>

A forma como usam o computador e a internet nestas idades é outras das dimensões importantes. O computador é usado sobretudo para fazer trabalhos para a escola (92% dos inquiridos), para ouvir música ou ver filmes (82% dos inquiridos) e para jogar (73%) (Tabela 3).
Tabela 3. Atividades realizadas pelos utilizadores de computador, grupo etário dos 10 aos 15 anos, em Portugal (2012) (%)

<table>
<thead>
<tr>
<th>Atividades realizadas em computador</th>
<th>% de utilizadores*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atividades escolares</td>
<td>94</td>
</tr>
<tr>
<td>Fazer trabalhos para a escola</td>
<td>92</td>
</tr>
<tr>
<td>Utilizar software educativo</td>
<td>49</td>
</tr>
<tr>
<td>Atividades de fazer</td>
<td>92</td>
</tr>
<tr>
<td>Ouvir música ou ver filmes</td>
<td>82</td>
</tr>
<tr>
<td>Jogar</td>
<td>73</td>
</tr>
<tr>
<td>Outros trabalhos ou atividades de carácter pessoal</td>
<td>16</td>
</tr>
</tbody>
</table>

A utilização da internet reflete em boa parte este padrão, tanto como ferramenta de apoio a atividades escolares – 97% utiliza a internet para pesquisar informação para trabalhos da escola -, como para comunicar com outros através das redes sociais (84% dos inquiridos) e enviar ou receber email (81% dos inquiridos) ou como sendo um ambiente “natural” para atividades lúdicas, particularmente jogar e fazer o download de jogos, imagens filmes ou música (81% dos inquiridos) (Tabela 4).

Tabela 4. Atividades realizadas pelos utilizadores de internet, grupo etário dos 10 aos 15 anos, em Portugal (2012) (%)

<table>
<thead>
<tr>
<th>Atividades realizadas na internet</th>
<th>% de utilizadores*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesquisa de informação e utilização de serviços online</td>
<td></td>
</tr>
<tr>
<td>Pesquisar informação para trabalhos escolares</td>
<td>97</td>
</tr>
<tr>
<td>Consultar websites de interesse pessoal</td>
<td>66</td>
</tr>
<tr>
<td>Pesquisar informação sobre saúde</td>
<td>42</td>
</tr>
<tr>
<td>Fazer download de software (exceto jogos)</td>
<td>46</td>
</tr>
<tr>
<td>Ler jornais, revistas ou livros</td>
<td>43</td>
</tr>
<tr>
<td>Comprar ou encomendar produtos ou serviços</td>
<td>6</td>
</tr>
<tr>
<td>Comunicação</td>
<td></td>
</tr>
<tr>
<td>Colocar mensagens em chats, blogs, websites de redes sociais, newsgroups, fóruns de discussão online ou mensagens escritas em tempo real (ex: messenger)</td>
<td>84</td>
</tr>
<tr>
<td>Enviar ou receber e-mail</td>
<td>81</td>
</tr>
<tr>
<td>Telefonar ou fazer chamadas de vídeo (via webcam)</td>
<td>36</td>
</tr>
<tr>
<td>Criar ou manter o seu blog</td>
<td>11</td>
</tr>
<tr>
<td>Atividades de obtenção e partilha de conteúdos</td>
<td></td>
</tr>
<tr>
<td>Jogar ou fazer download de jogos, imagens, filmes ou música</td>
<td>81</td>
</tr>
<tr>
<td>Colocar conteúdo pessoal num website para ser partilhado</td>
<td>66</td>
</tr>
<tr>
<td>Ouvir rádio ou ver televisão</td>
<td>51</td>
</tr>
<tr>
<td>Utilizar programas de partilha de ficheiros (peer-to-peer) para trocar filmes, música ou ficheiros de vídeo</td>
<td>21</td>
</tr>
</tbody>
</table>

Fonte: INE, Inquérito à Utilização de Tecnologias de Informação e Comunicação pelas Famílias.
Nota: * Refere-se ao primeiro trimestre do ano.

O desenvolvimento das competências digitais deste grupo etário faz-se essencialmente por autoaprendizagem e por recurso a “colegas, familiares ou amigos” (Tabela 5), em contextos de aprendizagem não-formais e informais, também propiciados pelo acesso generalizado a estas tecnologias, com uma utilização cada vez mais “amigável”, e pela curiosidade “quase inata” das crianças e jovens na sua exploração, ainda que, como vimos, com uma forte componente de atividades lúdicas e de comunicação.

<table>
<thead>
<tr>
<th>Tabela 5. Formas de aprendizagem de utilização de computador e internet, grupo etário dos 10 aos 15 anos, em Portugal (2012) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>% de utilizadores</td>
</tr>
<tr>
<td>Ajuda de colegas, familiares, amigos</td>
</tr>
<tr>
<td>Por autoaprendizagem</td>
</tr>
<tr>
<td>Na Escola</td>
</tr>
<tr>
<td>Em cursos fora da Escola</td>
</tr>
</tbody>
</table>

Fonte: INE, Inquérito à Utilização de Tecnologias de Informação e Comunicação pelas Famílias.

Como podemos observar na Tabela 6, a percentagem de utilizadores frequentes – que usa diariamente internet e computador – entre os jovens, em qualquer destes grupos etários, é muito elevada em Portugal (entre 80% a 90%) e, nalguns casos, até acima dos valores para a UE28. Ela vai, no entanto, decrescendo ligeiramente à medida que a idade avança. São os mais jovens – entre os 16-19 anos – que mais utilizam frequentemente computador e internet. Por outro lado, a intensidade na utilização de computador e de internet entre os jovens está sempre muito acima daquela que se registra para o total da população (16-74 anos).

<table>
<thead>
<tr>
<th>Tabela 6. Utilizadores frequentes de internet e computador (usam diariamente), total e jovens, Portugal e UE28 (2014) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Internet</td>
</tr>
<tr>
<td>Grupos etários</td>
</tr>
<tr>
<td>16-19</td>
</tr>
<tr>
<td>20-24</td>
</tr>
<tr>
<td>25-29</td>
</tr>
<tr>
<td>Total (16-74 anos)</td>
</tr>
</tbody>
</table>

Fonte: Eurostat, ICT usage in households and by individuals.
A mesma análise mas agora diferenciando pelo género, mostra que, sobretudo em Portugal, a percentagem de mulheres jovens que utiliza diariamente internet e computador é ligeiramente inferior à dos homens, mas apenas se registando esta diferença entre os grupos etários mais novos (16 a 19 e 20 a 24 anos). Já para o grupo etário dos 25 aos 29 anos, a percentagem de mulheres que usa frequentemente computador e internet é até ligeiramente superior à dos homens. De uma forma geral, os jovens em Portugal revelam uma intensidade de uso das TIC superior à dos jovens no conjunto da UE28.

Tabela 7. Utilizadores frequentes de internet e computador (usam diariamente), jovens e por género, Portugal e UE28 (2014) (%)

<table>
<thead>
<tr>
<th>Grupos etários</th>
<th>Sexo</th>
<th>Internet</th>
<th></th>
<th>Computador</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Portugal</td>
<td>UE28</td>
<td>Portugal</td>
<td>UE28</td>
</tr>
<tr>
<td>16-19</td>
<td>Masculino</td>
<td>91</td>
<td>90</td>
<td>88</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Feminino</td>
<td>88</td>
<td>90</td>
<td>81</td>
<td>78</td>
</tr>
<tr>
<td>20-24</td>
<td>Masculino</td>
<td>89</td>
<td>87</td>
<td>88</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Feminino</td>
<td>86</td>
<td>88</td>
<td>84</td>
<td>81</td>
</tr>
<tr>
<td>25-29</td>
<td>Masculino</td>
<td>82</td>
<td>86</td>
<td>79</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Feminino</td>
<td>83</td>
<td>85</td>
<td>82</td>
<td>78</td>
</tr>
</tbody>
</table>

Fonte: Eurostat, ICT usage in households and by individuals.

De acordo com os dados disponíveis, sobre as atividades na internet, e agora focando a análise apenas no grupo etário mais novo – dos 16 aos 19 anos – é possível vermos, na Tabela 8, que a forma de utilização da internet por estes jovens não se distingue particularmente daquela que caracterizava o grupo anterior (dos 10 aos 15 anos). As atividades de comunicação, nomeadamente participar em redes sociais e enviar ou receber email são as mais frequentes, quer em Portugal quer na UE28. Utilizar a internet para partilhar conteúdos, nomeadamente através de websites e redes sociais, tem também uma expressão muito elevada entre os jovens portugueses, contrariamente à que assume entre os jovens da UE28 (87% face a 50%, respetivamente). Seguem-se-lhe as atividades lúdicas – designadamente “jogar ou fazer download de jogos, imagens, filmes ou música” – e as de pesquisa de informação, em especial, a consulta de wikis para aceder a conteúdos de conhecimento sobre determinados assuntos e largamente utilizados pelos jovens no apoio aos trabalhos escolares. Mais uma vez, a percentagem de jovens portugueses que recorre à internet para estas atividades é geralmente superior à dos jovens no total da UE28.

Tabela 8. Atividades na internet, jovens dos 16 aos 19 anos, Portugal e UE28 (2014) (%)

<table>
<thead>
<tr>
<th>Atividades na internet</th>
<th>Portugal</th>
<th>UE28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participar em redes sociais (e.g. facebook, twitter)</td>
<td>96</td>
<td>87</td>
</tr>
<tr>
<td>Enviar ou receber e-mail</td>
<td>91</td>
<td>83</td>
</tr>
<tr>
<td>Colocar conteúdo pessoal num website para ser partilhado</td>
<td>87</td>
<td>50</td>
</tr>
<tr>
<td>Procurar informação sobre produtos e serviços</td>
<td>84</td>
<td>72</td>
</tr>
<tr>
<td>Jogar ou fazer download de jogos, imagens, filmes ou música</td>
<td>81</td>
<td>76</td>
</tr>
<tr>
<td>Consultar wikis (para obter conhecimento sobre qualquer assunto)</td>
<td>81</td>
<td>72</td>
</tr>
<tr>
<td>Ler notícias online em sites, jornais, revistas</td>
<td>71</td>
<td>58</td>
</tr>
</tbody>
</table>
Outra questão interessante é a de perceber se a utilização que os jovens fazem da internet é diferenciada para rapazes e raparigas. Este tem sido, aliás, um dos argumentos da literatura sobre o tema na explicação, entre outros fatores, do menor interesse das mulheres por estes domínios do ponto de vista de estudo e de carreira.

Observando a Tabela 9 nota-se, que apesar do padrão não muito distinto das atividades realizadas na internet, as raparigas revelam, ainda assim, uma maior utilização, que os rapazes, das redes sociais, da partilha de conteúdos em websites e da consulta de wikis. Por outro lado, os rapazes revelam, comparativamente às raparigas, um maior recurso à internet para ler notícias online, fazer o download de software e jogar jogos em rede com outras pessoas. A diferença nesta última atividade é, contudo, a mais significativa (51% dos rapazes e apenas 16% das raparigas), o que é consistente com as evidências empíricas recolhidas noutros estudos. O uso da internet para atividades lúdicas centeadas no jogo é persistentemente mais referido pelos jovens do sexo masculino.

Tabela 9. Atividades na internet, jovens dos 16 aos 19 anos, por género em Portugal (2014) (%)

<table>
<thead>
<tr>
<th>Atividades na internet</th>
<th>Masculino</th>
<th>Feminino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participar em redes sociais (e.g. facebook, twitter)</td>
<td>94</td>
<td>99</td>
</tr>
<tr>
<td>Enviar ou receber e-mail</td>
<td>89</td>
<td>92</td>
</tr>
<tr>
<td>ocolocar conteúdo pessoal num website para ser partilhado</td>
<td>84</td>
<td>90</td>
</tr>
<tr>
<td>Procurar informação sobre produtos e serviços</td>
<td>86</td>
<td>83</td>
</tr>
<tr>
<td>Jogar ou fazer download de jogos, imagens, filmes ou música</td>
<td>82</td>
<td>80</td>
</tr>
<tr>
<td>Consultar wikis (para obter conhecimento sobre qualquer assunto)</td>
<td>78</td>
<td>85</td>
</tr>
<tr>
<td>Ler notícias online em sites, jornais, revistas</td>
<td>79</td>
<td>65</td>
</tr>
<tr>
<td>Telefonar ou fazer chamadas de vídeo</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>Fazer o download de software (exceto jogos)</td>
<td>59</td>
<td>48</td>
</tr>
<tr>
<td>Jogar jogos em rede com outras pessoas</td>
<td>51</td>
<td>16</td>
</tr>
<tr>
<td>Criar sites ou blogs</td>
<td>21</td>
<td>17</td>
</tr>
</tbody>
</table>

Fonte: Eurostat, ICT usage in households and by individuals.

O nível de competências digitais, autoavaliaos pelas jovens e de acordo com a escala do inquérito do Eurostat, mostra, como se pode ver na Tabela 10, o seguinte: (1) os jovens têm em geral um melhor domínio no uso da internet e do computador do que a generalidade da população; (2) os jovens portugueses relativamente aos jovens na UE28 revelam um nível de competências digitais superior, ou são mais autoconfiantes nas suas capacidades de utilização de internet e de computador; (3) as competências digitais no uso de computador, mesmo entre os jovens, são geralmente mais elevadas, ou percepicionadas como tal, do que as competências na utilização da internet, apesar de, como vimos, o uso frequente de computador ser ligeiramente menor do que uso frequente de internet; (4) são os jovens entre os 20 e os 24 anos que se posicionam no uso de computador como tendo níveis de competências mais elevados,
comparativamente aos outros; (5) já na utilização da internet, são os mais novos (dos 16 aos 19 anos) que melhor se posicionam do ponto de vista de competências.

Tabela 10. Nível de competências no uso de internet e computador, total e jovens, Portugal e UE28 (2014) (%)

<table>
<thead>
<tr>
<th>Grupos etários</th>
<th>Nível de competências</th>
<th>Internet*</th>
<th>Computador*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Portugal</td>
<td>UE28</td>
</tr>
<tr>
<td>16-19</td>
<td>Baixo</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Médio</td>
<td>45</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Alto</td>
<td>44</td>
<td>27</td>
</tr>
<tr>
<td>20-24</td>
<td>Baixo</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Médio</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Alto</td>
<td>34</td>
<td>31</td>
</tr>
<tr>
<td>25-29</td>
<td>Baixo</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Médio</td>
<td>53</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Alto</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>Total (16-74 anos)</td>
<td>Baixo</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Médio</td>
<td>32</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Alto</td>
<td>13</td>
<td>12</td>
</tr>
</tbody>
</table>

Fonte: Eurostat, ICT usage in households and by individuals.

Também para este indicador importa perceber como se autoavaliam as raparigas comparativamente aos rapazes no que respeita às suas competências digitais. Como a Tabela 11 mostra, há, de facto, diferenças significativas entre géneros. De uma forma geral, as raparigas mostram níveis de competências no uso de computador e de internet inferiores aos dos rapazes, ou subavaliavam as competências que têm. No uso de internet, essas diferenças são mais expressivas no grupo dos 20 aos 24 anos de idade. Quanto à utilização de computador, as maiores diferenças registam-se entre os mais jovens – dos 16 aos 19 anos e dos 20 aos 24 anos de idade. É no grupo etário 25-29 que essas

8 Eurostat short description: Level of internet skills are measured using a self-assessment approach, where the respondent indicates whether he/she has carried out specific tasks related to internet use, without these skills being assessed, tested or actually observed. Six internet-related items were used to group the respondents into levels of internet skills in 2005, 2006, 2007 and 2011: use a search engine to find information; send an e-mail with attached files; post messages to chatrooms, newsgroups or any online discussion forum; use the internet to make telephone calls; use peer-to-peer file sharing for exchanging movies, music etc.; create a web page. Low level of basic internet skills: Individuals who have carried out 1 or 2 of the 6 internet-related items. Medium level of basic internet skills: Individuals who have carried out 3 or 4 of the 6 internet-related items. High level of basic internet skills: Individuals who have carried out 5 or 6 of the 6 internet-related items.

9 Eurostat short description: Level of basic computer skills are measured using a self-assessment approach, where the respondent indicates whether he/she has carried out specific tasks related to computer use, without these skills being assessed, tested or actually observed. Six computer-related items were used to group the respondents into levels of computer skills in 2006, 2007, 2009, 2011 and 2012: copy or move a file or folder; use copy and paste tools to duplicate or move information within a document; use basic arithmetic formula (add, subtract, multiply, divide) in a spreadsheet; compress files; connect and install new devices, e.g. a printer or a modem; write a computer program using a specialised programming language. Instead of the item on having connected and installed new devices, the 2005 items included the use of a mouse to launch programs such as an internet browser or word processor. Low level of basic computer skills: Individuals who have carried out 1 or 2 of the 6 computer-related items. Medium level of basic computer skills: Individuals who have carried out 3 or 4 of the 6 computer-related items. High level of basic computer skills: Individuals who have carried out 5 or 6 of the 6 computer-related items.
diferenças entre rapazes e raparigas são menores, sobretudo na utilização de computador.
Tabela 11. Nível de competências no uso de internet e computador, jovens e por género, em Portugal (2014) (%)

<table>
<thead>
<tr>
<th>Grupos etários</th>
<th>Sexo</th>
<th>Nível de competências</th>
<th>Internet*</th>
<th>Computador</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Masculino</td>
<td>Baixo</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Médio</td>
<td>39</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alto</td>
<td>48</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Feminino</td>
<td>Baixo</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Médio</td>
<td>52</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alto</td>
<td>39</td>
<td>53</td>
</tr>
<tr>
<td>20-24</td>
<td>Masculino</td>
<td>Baixo</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Médio</td>
<td>39</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alto</td>
<td>42</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Feminino</td>
<td>Baixo</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Médio</td>
<td>59</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alto</td>
<td>27</td>
<td>64</td>
</tr>
<tr>
<td>25-29</td>
<td>Masculino</td>
<td>Baixo</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Médio</td>
<td>46</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alto</td>
<td>30</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Feminino</td>
<td>Baixo</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Médio</td>
<td>61</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alto</td>
<td>21</td>
<td>58</td>
</tr>
</tbody>
</table>

Fonte: Eurostat, ICT usage in households and by individuals.

Tendo apenas em conta a última das competências discriminadas na escala usada pelo Eurostat, que se refere a “escrever um programa de computador usando uma linguagem de programação especializada”, entendida nessa escala como sendo a mais exigente, podemos ver apenas 1/5 dos jovens em Portugal e na UE28, entre os 16 e 19 anos, considera ter essas competências. Ainda assim, este é um valor mais elevado do que os registados em qualquer dos outros grupos etários (Tabela 12).

Tabela 12. Escrever um programa de computador usando uma linguagem de programação especializada, total e jovens em Portugal (2014) (%)

<table>
<thead>
<tr>
<th>Grupos etários</th>
<th>Computador</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Portugal</td>
</tr>
<tr>
<td>16-19</td>
<td></td>
</tr>
<tr>
<td>20-24</td>
<td></td>
</tr>
<tr>
<td>25-29</td>
<td></td>
</tr>
<tr>
<td>Total (16-74 anos)</td>
<td>8</td>
</tr>
</tbody>
</table>

Fonte: Eurostat, ICT usage in households and by individuals.

6. As dificuldades “estruturais” em disciplinas nucleares, como a matemática, ao longo dos vários ciclos
Uma das razões mais apontada para a limitada procura por parte dos jovens das áreas TICE, enquanto opção de prosseguimento de estudos e futura carreira profissional, é a exigência da formação em matemática. Esta tinha sido já amplamente referida no anterior estudo (Valente e Correia, 2015) e foi-o novamente neste estudo, quer por professores e psicólogos das escolas, quer pelos próprios alunos que entrevistámos.

A competência matemática e as competências básicas em ciências e tecnologia fazem parte das oito competências-chave, definidas pela CE, como essenciais à realização pessoal, inclusão social e empregabilidade (EC, 2006). Um desempenho ainda insuficiente nos testes do PISA (OCDE), e o amplo reconhecimento da importância das competências básicas, motivaram a adoção da meta da estratégia Europa 2020, no âmbito da educação e formação: até 2020, a percentagem de alunos de 15 anos com baixo desempenho em leitura, matemática e ciências deverá ser inferior a 15%.

Apesar do progresso que tem vindo a ser feito no ensino destas competências básicas, o baixo desempenho em literacia, matemática e ciências é ainda significativo. Os resultados do PISA (Tabela 13) mostram que, enquanto a percentagem de jovens com baixo desempenho em leitura e em ciências tem vindo a baixar de forma consistente a nível europeu, desde 2006 (23,1% e 20,2%, respectivamente), a percentagem de “low-achievers” em Matemática na UE é mais elevada (22,1% em 2012) e manteve-se praticamente inalterada entre 2009 e 2012. Portugal, com valores mais baixos em 2009 do que a média europeia em leitura e ciências, registou em 2012 uma evolução negativa no desempenho em todas as competências. A matemática tem a maior percentagem de “low-achievers”. No PISA de 2012, cerca de 25% dos jovens em Portugal, no ensino secundário, não detinha um nível de competências em matemática considerado suficiente.

Tabela 13. “Low-achievers” no PISA (%), Portugal e média EU (2009 e 2012)

<table>
<thead>
<tr>
<th></th>
<th>Leitura</th>
<th>Matemática</th>
<th>Ciências</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19,7</td>
<td>17,8</td>
<td>22,3</td>
</tr>
<tr>
<td>Portugal</td>
<td>17,6</td>
<td>18,8</td>
<td>23,7</td>
</tr>
</tbody>
</table>

Fonte: OCDE, PISA 2009 e 2012.

Com efeito se analisarmos, os resultados das provas finais do ensino básico e dos exames nacionais do ensino secundário (Tabela 14), podemos claramente verificar as dificuldades dos alunos no desempenho destas disciplinas, quer no 3º ciclo o básico, quer no secundário. Embora, a média final das provas do 3º ciclo na disciplina de Português tenha sido ligeiramente superior à registada em 2014, a média a matemática foi em 2015 inferior à do ano anterior e negativa. Já os resultados médios nos exames nacionais do ensino secundário a Matemática A e B melhoraram relativamente a 2014, quer no caso dos alunos internos, quer dos autopropostos, mas continuam a ser relativamente baixos, e negativos entre os alunos que se autopropõem a exame. O mesmo aconteceu com os resultados dos exames do ensino secundário na disciplina de Física e Química A, ainda que, em 2015, continuem a registar valores muito baixos.
Tabela 14. Resultados das provas finais do ensino básico e dos exames nacionais do ensino secundário, Portugal, 2015

<table>
<thead>
<tr>
<th>Disciplina</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provas finais do ensino básico (3º ciclo) (1ª fase)</td>
<td></td>
</tr>
<tr>
<td>91 Português</td>
<td>58</td>
</tr>
<tr>
<td>92 Matemática</td>
<td>48</td>
</tr>
<tr>
<td>Exames nacionais do ensino secundário (1ª fase)</td>
<td></td>
</tr>
<tr>
<td>635 Matemática A</td>
<td>120 (internos) 68 (autopropostos)</td>
</tr>
<tr>
<td>735 Matemática B</td>
<td>112 (internos) 79 (autopropostos)</td>
</tr>
<tr>
<td>715 Física e Química A</td>
<td>99 (internos) 86 (autopropostos)</td>
</tr>
</tbody>
</table>

Fonte: JNE, MEC.

Como foi amplamente referido por professores e psicólogos, a (im)preparação e gosto (ou não gosto) nestas disciplinas condicionam, em larga medida, as escolhas do 9º para o 10º anos de escolaridade. Estas são muitas vezes feitas por exclusão das disciplinas nas quais os alunos registam desempenhos mais baixos e em que as perspetivas de sucesso no futuro são menores, nomeadamente rejeitando os cursos do ensino secundário em que elas são nucleares, ou fazendo trajetórias indefinidas e irregulares de experimentação de cursos e disciplinas alternativos. Para aqueles que prosseguem os seus estudos no ensino secundário nestas disciplinas, as maiores dificuldades parecem concentrar-se no 11º ano, onde o número de reprovações e de desistências é maior. Sublinha-se, no entanto, que estas dificuldades tem um caráter mais estrutural do que puntual, evidenciando-se nas aprendizagens em ciclos anteriores, nomeadamente desde o 2º ciclo, e acumulando-se ao longo da trajetória escolar dos alunos. Segundo a opinião dos professores e psicólogos entrevistados, importaria repensar o modo como se ensina a matemática desde o 2º ciclo do ensino básico.

Este é também um tema amplamente discutido a nível europeu e uma preocupação comum ao nível das políticas de educação e formação dos Estados-membros. “As primeiras experiências das crianças são cruciais, mas os alunos receiam frequentemente a matemática e alguns alteram mesmo as suas opções de ensino para evitar esta disciplina. A adoção de métodos pedagógicos diferentes poderá ajudar a melhorar as atitudes, aumentar os níveis de desempenho e abrir novas possibilidades de aprendizagem” (EC, 2008).

Por outro lado, os dados do PISA, ao longo das suas várias aplicações, têm mostrado que o desempenho nas três áreas de literacia – leitura, matemática, ciências - está altamente correlacionado entre si e que o estatuto socioeconómico do aluno continua a ser o fator que mais influencia a aquisição de competências básicas (EC, 2014c:44). Contudo, a qualidade do ensino e determinadas caraterísticas estruturais e organizativas dos sistemas educativos assumem também um papel importante na melhoria dos resultados de aprendizagem.

No domínio da matemática, a motivação para a aprendizagem da matemática é determinante, e esta constitui uma prioridade em quase metade dos 31 países europeus analisados num estudo da Eurydice (2011a) sobre o ensino da matemática na Europa. A maioria das estratégias envolve projetos centrados em atividades extracurriculares ou em parceria com universidades e empresas, e revisão dos currículos promovendo
modelos de aprendizagem baseada em resultados e a aplicação da matemática a situações concretas. No entanto, reconhece-se a necessidade de reforçar as medidas direcionadas para os alunos com baixa motivação e fraco aproveitamento em matemática, e que tenham em conta o fator género.

No caso português, para além das várias iniciativas que visam estimular o gosto e a aprendizagem pela matemática desde os primeiros ciclos do ensino básico (e.g. campeonatos) e a crescente aproximação das escolas e das instituições de ensino superior neste domínio, foi particularmente referida a importância do ensino da lógica no secundário, nomeadamente como forma de dar aos alunos uma maior preparação para o prosseguimento de estudos nas áreas da TICE e, em particular, da Programação. Neste sentido, o novo Programa e Metas Curriculares da Matemática A do Ensino Secundário, com entrada em vigor em 2015/16 no 10º ano de escolaridade, refere que “…muitos dos conteúdos transversais inerentes a um Programa de Matemática do Secundário encontram-se agora, em grande medida, explicitados, o que levou, por exemplo, à constituição do domínio Lógica e Teoria dos Conjunutos no 10.º ano” (Damião e Festas, s.d.: 3).

No ensino da ciência, de acordo com os dados da Eurydice (2011b) para a Europa, são comuns as parcerias académicas com organizações ligadas às ciências (p. ex. os centros de ciência) que visam promover a cultura, o conhecimento e a investigação científicos, melhorar a compreensão dos alunos no que respeita à aplicação das ciências, complementar o seu ensino nas escolas, proporcionando aos alunos atividades que vão para além do que as escolas normalmente oferecem, e aumentar o recrutamento para as áreas CTEM. No entanto, são poucos os países que lançaram programas de âmbito nacional para resolver o insucesso escolar nas disciplinas de ciências ou iniciativas de orientação vocacional específicas que visem incentivar os jovens a optar por profissões científicas.

No entanto, a preocupação em encorajar os jovens a seguirem os seus estudos e carreiras em CTEM é já evidente. As medidas neste domínio passam por aumentar a motivação dos alunos para aprenderem matemática e ciências, por exemplo, alterando a percepção geral de que estas são disciplinas particularmente difíceis; melhorar a percepção difusa da relevância da matemática e das ciências para carreiras futuras; alterar a visão de que as opções de carreira nestas áreas são limitadas; ou oferecer orientação vocacional e aconselhamento especializado ao nível do ensino básico (Eurydice, 2012; Joyce e Dzoga, 2011; Kearney, 2011).

A orientação vocacional nas escolas assume também um papel fundamental na motivação dos jovens para as áreas das TICE. Os argumentos da elevada empregabilidade na área parecem ainda não ter chegado às famílias e aos jovens, sobretudo em momentos decisivos da escolha do percurso escolar a seguir, embora estes sejam cada vez mais sensíveis à questão da empregabilidade pós-curso e, neste sentido, a intervenção dos técnicos de orientação vocacional pode ser decisiva. Contudo, registase a necessidade de maior informação e sensibilização destes técnicos para as carreiras

em TIC, e suas profissões, nomeadamente a necessidade de disporem de referenciais mais atualizados (Valente e Correia, 2015).

7. Os requisitos de acesso a cursos superiores em TICE e a necessária consolidação de fileiras de progresso académica nestas áreas

Tendo em conta os dados dos requisitos de acesso a cursos superiores em TICE, no corrente ano letivo, como se pode ver no Anexo 3, grande parte dos cursos (licenciatura e mestrados integrados) exigem como provas de ingresso a Matemática A e a Física e Química A, duas disciplinas nas quais os alunos mostram mais dificuldades, refletidas quer nas notas do secundário, quer nas notas dos exames nacionais. Regista-se, no entanto, já uma significativa combinação, nas provas de ingresso exigidas, da Matemática A com outras disciplinas, nomeadamente Matemática B, Economia, Biologia e Geologia, e disciplinas dos grupos disciplinares de Humanidades e Artes, sobretudo para cursos nas áreas de Audiovisuais e produção dos media. É, ainda assim, de notar que as notas do último colocado, pelo contingente geral, na 1ª fase do ano anterior, têm uma dispersão muito significativa, desde um máximo de 16 valores a um mínimo de 10 valores e que a percentagem de candidatos em 1ª opção, na 1ª fase do ano anterior, é geralmente baixa, o que revela a insuficiente procura destes cursos.

As dificuldades já anteriormente referidas pelas instituições de ensino superior em fazer aumentar a procura ou preencher as vagas disponíveis nestes cursos refletem não apenas a tendência de evolução do número de inscritos pela 1ª vez no ensino superior, em decréscimo nos últimos anos, mas também alguns bloqueios na consolidação de fileiras de progressão académica, nomeadamente, a dificuldade em trazer os diplomados do ensino profissional para estes cursos devido às exigências dos exames de admissão, mesmo quando se trata da mesma área de formação.

A proporção alunos no ensino secundário, nas modalidades de ensino profissional, é já hoje muito significativa – 44,7% em 2013/14 -, comparativamente à que se registava em 2000/01 (28,7%) (Gráfico 16) e é ainda manifestamente reduzida a percentagem destes alunos que prossegue para o ensino superior. Por outro lado, como mostrámos anteriormente, o número de jovens inscritos em cursos desta natureza no ensino secundário nas áreas de TICE aumentou consideravelmente entre 2013 e 2014. Neste sentido, garantir que existem fileiras de formação nestas áreas, entre o secundário, nomeadamente na vertente do ensino profissionalizante, e o ensino superior é um elemento importante na captação de mais jovens para a progressão académica em TICE.
Nesta lógica, os CET e os cursos TESP assumem um papel fundamental, funcionando como “porta de entrada” no ensino superior. Normalmente com um nível de preparação técnica já muito equiparado ao primeiro ano de uma licenciatura nestas áreas, e a possibilidade de acumulação de créditos, o prosseguimento de estudos torna-se mais fácil, mesmo quando a empregabilidade destes jovens é quase imediata. Por outro lado, a procura de CET nas áreas das TICE tem mostrado, como vimos, uma dinâmica de crescimento.

Fonte: DGEEC, DSEE e DEEBS, 2015.
II. Delimitação do estudo

No seguimento da delimitação da oferta de educação e formação em TICE efetuada para o estudo de mapeamento (Valente e Correia, 2015), também realizado no âmbito da Coligação Portuguesa para a Empregabilidade Digital, importa agora centrar a análise mais na procura desses cursos do que na oferta que está disponível, e naquilo que pode facilitar ou bloquear a escolha dos alunos pelos cursos em áreas TICE.

Deste ponto de vista, foram tomadas também como referência para estruturação desta análise os três critérios de delimitação já usados no estudo anterior, embora com as adaptações que nos pareceram mais adequadas para um estudo que visa questionar alunos em fases críticas de decisão do percurso de educação e formação:

(1) Os níveis de qualificação atribuídos no âmbito da oferta de formação inicial, considerando-se, neste caso, também o ensino secundário vocacionado para o prosseguimento de estudos de nível superior (nível de qualificação 3 do Quadro Nacional de Qualificações), para além dos níveis 4, 5 e 611, conforme descritos no Quadro 1. Não foram considerados para este estudo os níveis de formação superior pós-graduada, como mestrado e doutoramento. A recolha de informação junto dos jovens/alunos em formação inicial contempla, assim, os níveis de ensino secundário e pós-secundário (até ao 1º ciclo do ensino superior)12.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline

\textbf{Nível} & \textbf{Qualificações} \\
\hline
1 & 2º Ciclo do ensino básico \\
2 & 3º Ciclo do ensino básico obtido no ensino básico ou por percursos de dupla certificação \\
3 & Ensino secundário vocacionado para o prosseguimento de estudos de nível superior \\
4 & Ensino secundário obtido por percursos de dupla certificação ou ensino secundário vocacionado para prosseguimento de estudos de nível superior acrescido de estágio profissional – mínimo de 6 meses \\
5 & Qualificação de nível pós-secundária não superior com créditos para prosseguimento de estudos de nível superior \\
6 & Licenciatura \\
7 & Mestrado \\
8 & Doutoramento \\
\hline
\end{tabular}
\caption{Estrutura do Quadro Nacional de Qualificações}
\end{table}

11 Para mais informação sobre o Quadro Nacional de Qualificações para o Ensino Superior, consultar: \url{http://www.dges.mctes.pt/DGES/pt/AssuntosDiversos/FHEQ/}

12 Considera-se, para efeitos de delimitação do trabalho empírico, que a análise deste segmento - jovens/alunos em formação inicial - exclui os ciclos anteriores (ensino básico), ainda que seja de ter em conta que a construção ou a descoberta de vocações desde estádios iniciais do percurso educativo seja uma dimensão importante a questionar na análise dos dados recolhidos, como veremos nas seções do estudo em que se exploram os resultados obtidos a partir de diferentes perspetivas.
(3) No âmbito da formação inicial (Quadro 2), e de acordo com os níveis de qualificação selecionados, foram considerados, para recolha de informação junto dos jovens/ alunos, os que frequentam, no ensino secundário, os cursos científico-humanísticos (ensino secundário geral) e os que frequentam cursos profissionais e cursos de aprendizagem (ensino secundário profissional). Ao nível do ensino pós-secundário não superior e da formação superior de curta duração (não conferente de grau) foram contemplados alunos em cursos de Cursos de Especialização Tecnológica (CET) do ensino não superior e em Cursos Técnicos Superiores Profissionais (TeSP) ministrados em instituições de ensino superior (institutos politécnicos). No âmbito do ensino superior, foram apenas incluídos na análise alunos em cursos de licenciatura, 1º ciclo. No que respeita a formação contínua (Quadro 2), são especificamente analisados os cursos de requalificação para as áreas TICE, dirigidos a diplomados do ensino superior desempregados, quer da iniciativa do serviço público de emprego e ministrados no âmbito da intervenção IEFP I.P., em parceria ou não com outras entidades, quer de iniciativa privada.

Quadro 2. Segmentos e modalidades da oferta de educação e formação

<table>
<thead>
<tr>
<th>Nível de Qualificação (QNQ)</th>
<th>Segmento da Oferta de EF</th>
<th>Nível de ensino/ Modalidade de EF</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Ensino Secundário Geral</td>
<td>Cursos Científico-Humanísticos</td>
</tr>
<tr>
<td>4</td>
<td>Ensino Secundário Profissional</td>
<td>Cursos Profissionais (CP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cursos de Aprendizagem (CA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cursos de Educação e Formação de Jovens (CEF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cursos Científico-Tecnológicos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cursos do Ensino Artístico Especializado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cursos Vocacionais</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cursos de Educação e Formação de Adultos (EFA)</td>
</tr>
<tr>
<td>5</td>
<td>Ensino Pós-secundário Não Superior e Formação Superior de Curta Duração (não conferente de grau)</td>
<td>Cursos de Especialização Tecnológica (CET)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cursos Técnicos Superiores Profissionais (TeSP)</td>
</tr>
<tr>
<td>6</td>
<td>Ensino Superior</td>
<td>Licenciatura - 1º Ciclo</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Mestrado - 2º Ciclo</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Mestrado Integrado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Doutoramento - 3º Ciclo</td>
</tr>
</tbody>
</table>

Formação de requalificação para as áreas TICE, dirigidos a | Cursos/ módulos, geralmente
diplomados do ensino superior desempregados, da iniciativa do serviço público de emprego e ministrados no âmbito da intervenção IEFP I.P.

Formação de requalificação para as áreas TICE, dirigidos a diplomados do ensino superior, de iniciativa privada. Cursos/ módulos, geralmente de curta duração.

(4) De acordo com as áreas de educação e formação contempladas no estudo de mapeamento da oferta de cursos em TICE, organizadas em três conjuntos – TICE Nuclear, TICE Alargado e CTEM –, conforme se explicita no Quadro 3, foram selecionados, para recolha de informação no âmbito desta análise, cursos, e respetivos alunos e formandos, em Ciências Informáticas (CNAEF 481), Eletricidade e energia (CNAEF 522), Eletrónica e Automação (CNAEF 523) e Audiovisuais e produção dos média (CNAEF 213), integrados nos grupos TICE Nuclear e TICE Alargado; cursos, e respetivos alunos e formandos, em áreas CTEM não-TICE, ou seja, não incluídos nas anteriores; e ainda cursos, e respetivos alunos e formandos, noutras áreas de educação e formação, não relacionadas com TICE ou CTEM, ou não conducentes ao prosseguimento de estudos em TICE ou CTEM.

Quadro 3. Áreas de educação e formação consideradas para as TICE, segundo a CNAEF

<table>
<thead>
<tr>
<th>Grupos em análise</th>
<th>CNAEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Áreas de estudo</td>
<td>Área de educação e formação</td>
</tr>
<tr>
<td>Grandes grupos</td>
<td>48 Informática*</td>
</tr>
<tr>
<td>TICE alargado</td>
<td>4 Ciências, matemática e informática</td>
</tr>
<tr>
<td>TICE nuclear</td>
<td>481 Ciências informáticas</td>
</tr>
<tr>
<td></td>
<td>482 Informática na ótica do utilizador</td>
</tr>
<tr>
<td></td>
<td>489 Informática - programas não classificados noutra área de formação</td>
</tr>
<tr>
<td>5 Engenharia, indústrias transformadoras e construção</td>
<td>52 Engenharia e técnicas afins</td>
</tr>
<tr>
<td></td>
<td>522 Eletricidade e energia</td>
</tr>
<tr>
<td></td>
<td>523 Eletrónica e automação</td>
</tr>
<tr>
<td>1 Educação</td>
<td>14 Formação de professores/ formadores e ciências da educação</td>
</tr>
<tr>
<td></td>
<td>146 Formação de professores e formadores de áreas tecnológicas</td>
</tr>
<tr>
<td>2 Artes e humanidades</td>
<td>21 Artes</td>
</tr>
<tr>
<td></td>
<td>211 Belas-Artes</td>
</tr>
<tr>
<td></td>
<td>213 Audiovisuais e produção dos media</td>
</tr>
<tr>
<td></td>
<td>214 Design</td>
</tr>
<tr>
<td>3 Ciências sociais, comércio</td>
<td>34 Ciências empresariais</td>
</tr>
<tr>
<td></td>
<td>342 Marketing e publicidade</td>
</tr>
<tr>
<td></td>
<td>345 Gestão e administração</td>
</tr>
<tr>
<td>e direito</td>
<td>8 Serviços</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CTEM (ciências, tecnologia, engenharia e matemática)</td>
<td>4 Ciências, matemática e informática</td>
</tr>
<tr>
<td></td>
<td>5 Engenharia, indústrias transformadoras e construção</td>
</tr>
</tbody>
</table>

Notas: * Programas transversais, em cuja classificação o "0" deve ser usado na terceira posição; as áreas de educação e formação consideradas em TICE Alargado são aquelas onde se registam cursos com recurso intensivo às TICE; em áreas CTEM considera-se apenas o nível mais agregado, dos grandes grupos 4 e 5 da CNAEF.

Com efeito, ainda que se tenha tomado como ponto de partida a delimitação da oferta de educação e formação em TICE realizada para o estudo do mapeamento dos cursos disponíveis nestas áreas, no âmbito da formação inicial e contínua, e para os vários níveis de qualificação e modalidades de ensino e formação, foi agora necessário fazer opções do ponto de vista da estruturação de uma análise que é mais focada na procura e na escolha ou não escolha de percursos de educação e formação conducentes a, relacionados com ou especificamente vocacionados para áreas TICE. Essas opções passam, assim, por (Quadro 4):

- Incluir jovens/ alunos que se encontram a frequentar o ensino secundário geral, em cursos científico-humanísticos, que constituem uma oferta educativa vocacionada para o prosseguimento de estudos de nível superior (universitário ou politécnico), e nos quatro cursos em que esta oferta se estrutura - Ciências e Tecnologias; Ciências Socioeconómicas; Línguas e Humanidades; Artes Visuais – tendo em conta que, embora o curso de Ciências e Tecnologias seja a opção naturalmente mais conducente ao prosseguimento de estudos em TICE, este prosseguimento é também possível para alunos dos outros cursos, desde que tenham disciplinas específicas requeridas no acesso aos cursos superiores em TICE; por outro lado, porque importa compreender como, no ensino secundário, estes jovens escolhem o curso em que estão e como percecionam a possibilidade de vir a interessarem-se ou a optar por um curso em TICE.

- Focar a análise, no âmbito do ensino secundário profissional, nos cursos profissionais e nos cursos de aprendizagem e nos jovens/ alunos que os frequentam, uma vez que estas são as modalidades com maior volume de inscritos, nomeadamente em TICE Nuclear, com cerca de 15000 jovens inscritos em 2014.

- Centrar a atenção, no âmbito da formação contínua, nos diplomados do ensino superior desempregados que frequentam cursos de requalificação para as áreas TICE, dado que esta constitui hoje uma aposta estratégica do serviço público de emprego que procura, por um lado, combater o aumento dos desemprego de licenciados através da incremento da sua empregabilidade e, por outro lado, poder vir a dar resposta, em tempo útil, às necessidades não satisfeitas de mão-de-obra qualificada para empregos digitais em Portugal.
– Seleccionar, no âmbito das áreas de educação e formação, aquelas que no âmbito do que foi considerado TICE Nuclear e TICE Alargado, representam a maior parte da oferta de cursos disponíveis e abrangem o maior número de alunos, nos vários níveis do sistema educativo, nomeadamente as Ciências informáticas, a Eletricidade e energia, a Eletrónica e automação e os Audiovisuais e produção dos media – evidenciando, no entanto, comportamentos distintos do ponto de vista da evolução da procura nos últimos anos.

– Incluir, para além dos cursos e dos alunos em TICE, de acordo com a seleção efetuada, cursos e alunos de áreas CTEM, uma vez que estes podem efetivamente representar uma enorme reserva de recursos humanos qualificados - em 2013/2014, representavam cerca de 30% do total de inscritos no ensino superior em Portugal, i.e., mais de 100 mil alunos, dos quais 64% com formações não-TICE - com potencial de motivação e de requalificação para áreas nucleares das TICE, dada similitude de parte da formação de base a que estes jovens têm acesso.

– Incluir também outras áreas de educação e formação, não relacionadas com TICE ou CTEM, uma vez que importa explorar, no âmbito deste estudo, as razões da não- escolha de cursos conducentes a, relacionados com ou especificamente vocacionados para áreas TICE e as percepções destes jovens sobre a possibilidade de virem estudar ou a trabalhar em TICE. Por outro lado, no âmbito dos cursos de requalificação de desempregados para as TICE são muito variadas as áreas de graduação dos diplomados abrangidos.
Quadro 4. Delimitação dos níveis de ensino, modalidades e áreas de educação e formação considerados na análise

<table>
<thead>
<tr>
<th></th>
<th>Educação e Formação Inicial</th>
<th>Formação Contínua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nível de ensino</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensino Secundário Geral</td>
<td>Ensino Secundário Profissional</td>
<td>Ensino Superior (nível 6 do QNQ)</td>
</tr>
<tr>
<td>(nível 3 QNQ)</td>
<td>(nível 4 QNQ)</td>
<td>Requalificação para TICE</td>
</tr>
<tr>
<td>Modalidade de educação/ formação</td>
<td>Cursos Científico-Humanísticos</td>
<td>Cursos de requalificação de diplomados do ensino superior desempregados</td>
</tr>
<tr>
<td>Áreas de educação e formação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curso de Ciências e Tecnologias; Curso de Ciências Socioeconómicas; Curso de Línguas e Humanidades; Curso de Artes Visuais</td>
<td>(1) Cursos em TICE incluindo Ciências Informáticas (481); Eletricidade e energia (522); Eletrónica e Automação (523); Audiovisuais e produção dos média (213); (2) em áreas CTEM não-TICE (CNAEF 4 e 5, não incluídas nas anteriores); (3) em áreas não-CTEM (todas as restantes áreas de educação e formação, não incluídas nas anteriores)</td>
<td>(1) Diplomados em áreas CTEM não-TICE; (2) Diplomados em áreas não-CTEM</td>
</tr>
</tbody>
</table>
III. Metodologia

O desenho metodológico deste estudo tem por base os três eixos de análise contemplados – eixo 1, centrado na procura de educação e formação em TICE; eixo 2, centrado na oferta de educação e formação em TICE; eixo 3, centrado na comunicação, sensibilização e orientação para as carreiras TICE - obrigando em cada um deles a considerar critérios de análise específicos e a aplicar métodos de recolha de informação diferenciados embora complementares do ponto de vista de pesquisa.

1. Eixo 1, centrado na procura de educação/ formação em TICE

1.1. Modelo de análise

No eixo 1, centrado na procura de ofertas de educação/ formação em TICE, é necessário ter em conta aquilo que pode influenciar as escolhas dos jovens, em fases decisivas do seu percurso educativo. Com base na literatura disponível, e nos resultados do trabalho empírico já realizado anteriormente, foi definido um modelo de análise que procura ter em conta vários fatores, organizados em seis dimensões (Quadro 5). As três primeiras dimensões referem-se a fatores de natureza mais intrínseca, englobando aspetos como:

1. As próprias preferências e vocações dos jovens e o seu percurso escolar prévio, não apenas do ponto de vista de desempenho mas também de escolhas, uma vez que ambos condicionam o percurso escolar futuro.

2. O acesso a informação e o conhecimento que têm sobre cursos e carreiras possíveis nas áreas TICE, bem como as percepções sobre o que é estudar e trabalharem TICE, nos quais se avalia, nomeadamente, a existência (ou não) de estereótipos que possam condicionar a escolha da área.

3. A intensidade e o tipo de uso de TIC, no seu dia-a-dia, e a avaliação que fazem das suas capacidades em TIC, dado que o nível de literacia digital e a autoconfiança na utilização destas tecnologias podem influenciar a sua escolha.

As restantes três dimensões de análise incluem outros aspetos, de natureza mais contextual e estrutural, e que condicionam, com maior ou menor intensidade, as escolhas dos jovens nesta fase. Referem-se, nomeadamente:

1. À influência dos pares, no que toca à forma como os jovens, nestas idades, percecionam entre si gostos, vocações e interesses particulares pelas TICE.

2. À influência da família, em especial dos pais, relativamente às escolhas do percurso escolar dos filhos e, em particular, da opção por um percurso em áreas TICE.

3. À influência da escola e da forma como está organizado o sistema educativo, considerando-se aqui aspetos como o acesso e uso das TIC em meio escolar, o ensino das TIC e da informática ao longo do percurso educativo, o papel dos professores e da orientação vocacional nas escolas, bem como os próprios requisitos de acesso a cursos e a prosseguimento de estudos em áreas de TICE.
Quadro 5. Jovens no ensino secundário e pós-secundário: modelo de análise

<table>
<thead>
<tr>
<th>Preferências, vocações e percurso</th>
<th>Informação, perceções e estereótipos</th>
<th>e.skills e e.confiança</th>
</tr>
</thead>
<tbody>
<tr>
<td>• PERCURSO EF e razões da escolha</td>
<td>• Acesso a informação sobre cursos/ carreiras TICE</td>
<td>• Intensidade e uso das TIC</td>
</tr>
<tr>
<td>• Definição e construção de vocações</td>
<td>• Percepções sobre cursos TICE</td>
<td>• Autoavaliação das capacidades em TIC</td>
</tr>
<tr>
<td>• Interesse/ motivação pelas áreas STEM/ TICE</td>
<td>• Percepções sobre o trabalho em TICE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Percepções sobre empregos/ carreiras TICE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Percepções sobre empregabilidade pós-curso</td>
<td></td>
</tr>
</tbody>
</table>

Contexto Interpares

- Imagem relativa a jovens “IT heavy users” (estereótipos ICT)
- Estereótipos e segregação de género em TICE

Contexto Família

- Conhecimento e atitudes dos pais relativamente a educação/ formação e carreiras em TICE

Contexto Escola e Sistema Educativo

- Uso de TIC na pedagogia
- Ensino de TIC/ Informática
- Formação e atitudes dos professores
- Recursos TIC na escola
- Orientação para STEM/ TICE
- Requisitos de acesso a cursos TICE

No segmento da formação contínua, nomeadamente dos cursos de requalificação para as TICE, embora a situação de desemprego, em que a maioria destes formandos se encontra, seja determinante no acesso/ frequência do curso, haverá também outras razões e motivações que importa questionar. O modelo de análise deste segmento inclui igualmente questões relacionadas com o acesso a informação sobre os cursos disponíveis e o processo de candidatura/ seleção, bem como, à semelhança do segmento anterior, questões relativas a percepções e estereótipos face ao trabalho e às carreiras em TICE (Quadro 6).

Quadro 6. Diplomados desempregados em cursos de requalificação para TICE: modelo de análise

<table>
<thead>
<tr>
<th>Razões da frequência do curso</th>
<th>Informação e processo de candidatura/ seleção</th>
<th>Percepções e estereótipos face ao trabalho/ carreira em TICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Situação de desemprego e perspetivas de empregabilidade</td>
<td>• Acesso a informação sobre o curso</td>
<td>• Percepções sobre o trabalho em TICE</td>
</tr>
<tr>
<td></td>
<td>• Acesso a informação</td>
<td>• Percepções sobre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

51
• Iniciativa individual/ oportunidade/ condicionamento da situação de desemprego subsidiado
• Percurso profissional/ experiências de trabalho em áreas relacionadas
• Percurso de educação/ formação e afinidade da formação de origem
• Vocação ou interesse/ motivação pelas áreas TICE

<table>
<thead>
<tr>
<th>sobre emprego/ carreiras em TICE</th>
<th>sobre emprego/ carreiras em TICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Percepções sobre o curso</td>
<td>• Percepções sobre empregabilidade pós-curso</td>
</tr>
<tr>
<td>• Candidatura espontânea; encaminhamento do serviço público de emprego</td>
<td>• Estereótipos e segregação de género em TICE</td>
</tr>
<tr>
<td>• Requisitos de acesso e processo de avaliação</td>
<td></td>
</tr>
<tr>
<td>• Inscrição e frequência gratuita, subsidiada, (co) financiada pelo próprio</td>
<td></td>
</tr>
</tbody>
</table>

1.2. Metodologia: focus-groups

No âmbito do eixo 1, centrado na procura, optámos pela realização de um conjunto de focus-groups com alunos/ formandos nos vários segmentos e ciclos da oferta de educação considerados. De uma forma geral, os objetivos destes focus-groups é o de conhecer as percepções destes alunos/ formandos relativamente à formação e ao emprego em TICE e identificar os principais fatores facilitadores e de bloqueio na opção por estas áreas.

No segmento dos jovens/ alunos no ensino secundário e pós-secundário, dada a diversidade e especificidade dos ciclos e segmentos de educação e formação envolvidos, foram concebidos diversos guiaes, adaptados a cada um destes contextos (Anexo 4) ainda que obedecendo a uma estrutura comum de questões, de acordo com o modelo de análise adotado (cf. Quadro 5), nomeadamente:

1. As razões da escolha do curso em que estão.
2. A utilização das TIC no dia-a-dia (quanto tempo o fazem e para quê) e autoavaliação das competências em TIC.
3. As influências na escolha/ não escolha de um curso TICE.
4. O acesso a informação sobre cursos/ carreiras em TICE.
5. Percepções sobre os cursos TICE.
6. Percepções sobre o trabalho/ carreira ideal.
7. Percepções sobre o trabalho/ carreira em TICE.
8. Para os que não estão em cursos TICE, ou não querem seguir um percurso de educação/ formação e uma carreira em TICE, o que os faria mudar de ideias.

Em cada ciclo e modalidade de educação e formação considerada (cf. Quadro 4), foram selecionados alunos do 1º ano, ou seja, alunos que estavam a iniciar um ciclo de estudos no secundário ou pós secundário (incluindo o 1º ciclo do ensino superior), pelo que a opção pela área/ curso foi feita recentemente, na transição de ano letivo. Apenas no caso dos alunos no ensino secundário geral, se realizaram também focus-groups com alunos no 12º ano, i.e. numa fase final deste ciclo e que obrigará a escolhas relativamente ao
prosseguimento ou não de estudos. Todos os focus-groups foram realizados em período de início do ano letivo 2015/2016 – entre outubro e novembro de 2015 – e em meio escolar, nomeadamente em escolas secundárias, escolas profissionais, centros de formação profissional, institutos politécnicos e universidades. Os participantes nos focus-groups estavam em cursos de áreas de educação e formação diversas, quer conducentes a, relacionados com ou especificamente vocacionados para TICE, quer não relacionadas com as áreas TICE (cf. Quadro 4).

No âmbito dos cursos de requalificação para as TICE, foram realizados focus-groups com formandos que tinham iniciado recentemente esta formação (em setembro de 2015), quer da iniciativa do IEFP, em parceria com universidades e institutos politécnicos, quer de iniciativa privada. Estes formandos são todos diplomados do ensino superior, com formação em áreas diversas e um leque de idades muito amplo. No momento em que participaram nos focus-groups, realizados também entre outubro e novembro de 2015, encontravam-se em situação de desemprego.

A especificidade destes cursos e destes formandos, comparativamente ao segmento anterior, obriga a que o guião para estes focus-groups seja adaptado, conforme o que já tinha sido previsto no modelo de análise (Quadro 6). Deste modo, o guião centra-se em quatro questões principais, de maior pertinência neste caso – razões da frequência do curso e empregabilidade pós-curso -, apesar de estes serem também dois dos temas abordados nos restantes focus-groups (Anexo 5):

1. As razões da frequência do curso.
2. A informação/conhecimento sobre o curso e o processo de candidatura/seleção.
3. Percepções sobre o trabalho/carreira ideal.
4. Percepções sobre o trabalho/carreira em TICE.

A dimensão de género em TICE foi integrada, de uma forma transversal às questões dos focus-groups, explorando nomeadamente a forma como alunos/formandos, de várias idades e em ciclos/modalidades de educação e formação distintos, percecionam o interesse e a participação das raparigas/mulheres quer em percursos educativos vocacionados para as TICE quer em futuras carreiras nestas áreas – procurando-se que cada focus-group fosse composto por participantes de ambos os sexos.

De modo a permitir que todos os participantes intervissem na discussão e a obter informação sobre todas as questões de interesse para o estudo, cada focus-group foi composto por 10 a 12 participantes e teve uma duração estimada de 1.30h a 2h. Houve, no entanto, alguns focus-groups que, em função das circunstâncias, tiveram um número de participantes inferior ou superior ao sugerido.

A Tabela 15 mostra o número de focus-groups realizados, e o correspondente número de participantes auscultados, em cada um dos ciclos e segmentos de educação e formação considerados. No total, foram realizados 43 focus-groups com alunos/formandos e envolvidos 487 participantes, grande parte deles jovens/alunos no ensino secundário (62,8%).
Tabela 15. Número de *focus-groups* realizados e de participantes (alunos/ formandos)

<table>
<thead>
<tr>
<th>Eixo 1, centrado na procura</th>
<th>Educação e Formação Inicial</th>
<th>Formação Contínua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ensino Secundário Geral (nível 3 QNQ)</td>
<td>Ensino Secundário Profissional (nível 4 QNQ)</td>
</tr>
<tr>
<td>Nº de focus-groups realizados</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Nº de participantes</td>
<td>118</td>
<td>188</td>
</tr>
</tbody>
</table>

A realização deste número de *focus-groups*, com o envolvimento de tantos alunos e formandos, num período muito limitado de tempo (cerca de 2 meses) só foi possível devido à enorme colaboração que tivemos dos parceiros do Consórcio Maior Empregabilidade (CME) e da Rede Maior Empregabilidade – Ensino Profissional (RME-EP), ambos dinamizados pela Fórum Estudante.

No âmbito do Consórcio Maior Empregabilidade, tivemos a colaboração direta de 9 instituições de ensino superior, através da realização de *focus-groups* com alunos no 1º ano de licenciaturas e cursos TeSP, de acordo com os guiões disponibilizados e as orientações dadas pela equipa de estudo.

No âmbito da Rede Maior Empregabilidade – Ensino Profissional, 14 dos seus parceiros – escolas secundárias e escolas profissionais – realizaram *focus-groups* com alunos no 1º ano de cursos profissionais, de acordo com guio específico e com o acompanhamento da equipa de estudo.

Os restantes *focus-groups* foram dinamizados pela equipa de estudo e contaram com a colaboração de várias instituições de ensino e formação, nomeadamente escolas secundárias, centros de formação profissional, universidades, institutos politécnicos e o IEFP, I.P. O conjunto das entidades que participaram neste estudo consta do Anexo 11.

Foram ainda realizados pela equipa de estudo, 3 *focus-groups* adicionais – com psicólogos dos serviços de psicologia e orientação (SPO) das escolas, cujo contacto e convite foram feitos diretamente a escolas e a profissionais destes serviços; com professores de TIC/ Informática, para o qual contámos com a colaboração da Associação Nacional de Professores de Informática (ANPRI); com pais e encarregados de educação, cujos educandos frequentam o ensino secundário, contactados e convidados informalmente. Os respetivos guiões de *focus-groups* encontram-se no Anexo 6, no Anexo 7 e no Anexo 8.

A informação recolhida foi integralmente transcrita possibilitando uma análise de conteúdo ao conjunto dos relatórios dos *focus-groups* realizados, dos quais alguns excertos são extraídos e apresentados ao longo do estudo, em função do tema ou da dimensão de análise a que reportam.
2. Eixo 2, centrado na oferta de educação/ formação em TICE

No âmbito do eixo 2, o objetivo é identificar experiências educativas/ formativas de sucesso na área das TICE, quer implementadas pelas instituições de ensino/ formação envolvidas neste estudo, quer promovidas por outros organismos públicos, a nível nacional, com intervenção nestas áreas, ou de iniciativa privada ou associativa. A pesquisa incluiu também uma abordagem internacional, identificando-se e descrevendo-se algumas das iniciativas mais relevantes, sobretudo a nível europeu.

2.1. Critérios de identificação de experiências educativas/ formativas de sucesso em TICE

São considerados neste levantamento, experiências, projetos, iniciativas ou ações/ cursos de educação e formação implementados nos últimos três anos, dirigidos às áreas TICE, e que tenham contribuído para, pelo menos, um dos seguintes objetivos:

(1) Captação de alunos: i.e. que mobilizaram mais alunos para a educação/ formação em TICE, quer jovens em fase de decisão do curso, quer desempregados na perspetiva de requalificação, e/ou dando particular atenção à dimensão de género (mobilização das raparigas para estas áreas).
(1) Sucesso educativo: i.e. que permitiram melhorar o desempenho dos alunos em educação/ formação em TICE (p.ex. aumentaram os níveis de aprovação e as notas dos alunos; reduziram as desistências; incentivaram a progressão dos estudos para ciclos posteriores, ...).
(2) Promoção da empregabilidade: i.e. que garantiram ou melhoraram a inserção profissional dos alunos (p.ex. através de maior ligação às empresas, realização de estágios, acesso a certificações internacionais, envolvimento de associações setoriais, requalificação de diplomados desempregados para as TICE ...).

2.2. Metodologia

Para este levantamento, foi concebido um guião específico (Anexo 9) com os seguintes campos de identificação e descrição das experiências educativas/ formativa de sucesso em TICE:

1. Designação, período de implementação e instituição/ departamento responsável.
2. Descrição sucinta do que consiste (ou consistiu) a experiência (principais objetivos e ações, públicos-alvo, parceiros envolvidos...).
3. Principais resultados obtidos, nomeadamente tendo em conta os critérios/ objetivos mencionados, e fatores que críticos no sucesso da experiência.
4. Expectativas ou iniciativas de continuidade e/ou melhoria da experiência.

Este guião foi enviado a todas as instituições de ensino e formação parceiras do CME e da RME-EP, convidando-as a identificarem e a descreverem pelo menos uma experiência formativa/educativa de sucesso em TICE que tenha sido implementada pela instituição, em parceria ou não com outras entidades. Todas as outras instituições de ensino e formação que colaboraram neste estudo – nomeadamente escolas secundárias,
universidades, centros de formação profissional, IEFP, I.P., associações sectoriais e profissionais – foram também convidadas a participar neste levantamento.

3. **Eixo 3, centrado na comunicação, sensibilização e orientação para cursos e carreiras em TICE**

O eixo 3 do estudo tem como objetivo, identificar e descrever boas práticas na sensibilização e mobilização dos jovens para a escolha de educação/ formação e carreiras em TICE. Para além de práticas implementadas pelas instituições de ensino/ formação envolvidas neste estudo, e de outras de iniciativa pública, privada ou associativa, procurou-se, neste caso, ter em conta também iniciativas de âmbito europeu, ou implementadas por alguns dos Estados-membros da UE, com particular relevância para o tema.

3.1. **Critérios de identificação de boas práticas**

Para a identificação destas práticas, foram definidos três critérios e considerados projetos, iniciativas ou ações implementadas nos últimos três anos, dirigidos à sensibilização, mobilização e orientação dos jovens para as áreas TICE que cumprissem, pelo menos, um dos seguintes critérios:

1. Informação dos técnicos relativamente às áreas TICE: i.e. que aumentaram ou melhoraram a informação disponibilizada aos técnicos de orientação vocacional ou profissional sobre as oportunidades de educação, formação e emprego em TICE.
2. Reforço, inovação e eficácia das práticas/ recursos usados: i.e. que criaram novos recursos ou melhoraram a eficácia das ações de comunicação e sensibilização dos jovens para as áreas TICE; que reforçaram o serviço de orientação vocacional ou profissional disponibilizado, especificamente dirigido às áreas TICE.
3. Capturação de alunos: i.e. que mobilizaram mais alunos para educação, formação e carreiras em TICE, nomeadamente dando particular atenção à dimensão de género (mobilização das raparigas para estas áreas).

3.2. **Metodologia**

Foi concebido um guia específico (Anexo 10) para a identificação e descrição dessas práticas, com os seguintes campos:

1. Designação, período de implementação e instituição/ departamento responsável.
2. Descrição sucinta do que consiste (ou consistiu) a prática (principais objetivos e ações, públicos-alvo, parceiros envolvidos…).
3. Principais resultados obtidos, nomeadamente tendo em conta os critérios/ objetivos mencionados, e factores que críticos no sucesso da prática.
4. Expectativas ou iniciativas de continuidade e/ou melhoria da prática.
Este guia foi enviado a todas as instituições de ensino e formação parceiras do CME e da RME-EP, convidando-as a identificarem e a descreverem pelo menos uma boa prática, que tenha sido implementada pela instituição, em parceria ou não com outras entidades, com o objetivo de sensibilizar e mobilizar jovens para cursos e carreiras em TICE. Todas as outras instituições de ensino e formação que colaboraram neste estudo – nomeadamente escolas secundárias, universidades, centros de formação profissional, IEFP, I.P., empresas e associações sectoriais e profissionais – foram também convidadas a participar nesta fase.

Deste levantamento, no conjunto dos dois eixos, foi possível identificar 46 boas práticas e experiências educativas de sucesso, promovidas por algumas das instituições de ensino e formação que participaram neste estudo, e cuja informação suporta a análise realizada no capítulo V. Esta análise conta também com informação relativa a iniciativas públicas neste âmbito, quer do Ministério da Educação e Ciência, quer do Ministério da Solidariedade, Emprego e Segurança Social, da intervenção do IEFP I.P. Outras, em curso ou previstas, promovidas por organizações privadas, públicas ou associativas e, em particular, no contexto da intervenção da Coligação Portuguesa para a Empregabilidade Digital (CPED) são igualmente consideradas. Finalmente, várias iniciativas internacionais e europeias de relevância são identificadas e analisadas.
IV. A opção por cursos e carreiras em TICE: percepções, bloqueios e fatores facilitadores

1. Jovens no ensino secundário e pós-secundário

1.1. As razões da escolha do curso

A transição do ensino básico para o secundário é um dos momentos decisivos do percurso escolar dos alunos e que condiciona, em larga medida, as suas opções futuras nomeadamente a de continuidade ou não para um curso ou uma carreira em TICE. São, de facto, várias as opções com estes jovens se defrontam: continuar os estudos no ensino geral ou optar pela via profissional; escolher um dos cursos científico-humanísticos em que o ensino secundário geral se estrutura ou um dos cursos profissionais disponíveis no ensino secundário profissional; prosseguir os estudos para o ensino superior, e em que via, curso ou instituição, ou começar a trabalhar, depois de concluído o secundário.

As escolhas por vocação, gosto ou desempenho

Entre os jovens que entrevistámos no 10º e 12º ano, do ensino geral, as razões da escolha do curso científico-humanístico que frequentam sugerem várias alternativas. A primeira é a de que escolherem o curso porque sentem vocação e gosto pela área, quer seja porque se identificam ou tem bons desempenhos nas disciplinas nucleares do curso, quer seja porque já sabem a profissão que querem seguir.

“É através desta área que consigo seguir o que quero. Eu quero ser pediatra. Desde pequena que gosto desta área, gosto de ajudar e até acho que tenho jeito para isso” (F, 16 anos, CCH Ciências e Tecnologia)

“Escolhi Economia e achei que esta área era mais dentro do que eu gostava” (M, 15 anos, CCH Ciências Socioeconómicas)

“Escolhi porque sempre tive, desde pequenino, gosto por desenhar. Espero no futuro seguir Arquitetura” (M, 16 anos, CCH Artes Visuais)

“Escolhi Humanidades porque tem disciplinas que eu gosto e com as quais me identifico mais” (M, 16 anos, CCH Línguas e Humanidades)

“Sempre gostei de história, por isso fui para humanidades” (F, 17 anos, CCH Línguas e Humanidades)

“Desde muito cedo que tenho interesse nesta área de ciências. Acho que era a área que tinha mais capacidades e jeito. Não tenho jeito para línguas e artes…Eu quero seguir engenharia química ou civil” (M, 16 anos, CCH Ciências e Tecnologia)

“Sempre gostei de ciências e era melhor nessas disciplinas: química, matemática…” (M, CCH, 17 anos Ciências e Tecnologias)
As escolhas por indefinição, experimentação ou abrangência da área

Outras escolhas, ainda não completamente definidas, remetem para razões diversas que incluem aspectos como, a “abrangência” da área, do ponto de vista dos cursos e das saídas profissionais que podem seguir; a definição ou a clarificação de um gosto por uma determinada área ou disciplina, depois de experimentarem outra; a indefinição quanto ao querem seguir e, por isso, optam por uma percurso num área na qual lhes parece “terem mais futuro”.

“Preciso de mais opções para escolher, não tenho bem a certeza do que vou escolher e é uma área ampla” (M, 15 anos, CCH Ciências Socioeconómicas)

“Eu estava no curso de socioeconómicas, mas mudei porque, desde sempre, que eu gosto de desenhar e acho que este curso tem mais a ver comigo (F, 15 anos, CCH Artes Visuais)

“Humanidades soa-me melhor do que qualquer outra alternativa. Eu ainda não sei o que vou seguir, mas acho que tem mais a ver comigo” (M, 16 anos, CCH Línguas e Humanidades)

“Escolhi esta área mas agora no 12º ano percebo que gosto de uma coisa para me exprimir. Gosto de cinema. Tentei fazer o 12º ano em artes, mas tinha que fazer cinco exames e fazer o 10º e o 11º de geometria descritiva…continuo aqui. Mas continuo com ideias de ir para realização” (M, 18 anos, CCH Ciências e Tecnologias)

“Eu tinha notas mais ou menos iguais em todas as disciplinas mas não queria ir para línguas... e conheço pessoas que estão em artes e têm dificuldade em encontrar emprego. Por isso, vim para ciências” (F, 15 anos, CCH Ciências e Tecnologias)

“Ainda não sei o que vou seguir, ainda estou a tentar descobrir. Acho que escolhi por pressão. Dizem que os outros não têm saída. Dizem que esta é uma área com mais saídas para quem está indecisa como eu” (F, 17 anos, CCH Ciências e Tecnologias)

“Acho que tem mais saída no futuro e porque preciso destas disciplinas. Se alguma coisa correr mal, tenho mais opções. Até gostava de artes mas esta área tem mais saídas (F, 15 anos, CCH Ciências e Tecnologias)

“Achei que era uma área onde podia ter mais emprego, mas ainda não sei o que vou seguir” (M, 15 anos, Ciências Socioeconómicas)

Embora o traço comum entre estes jovens seja o de indefinição nas escolhas, parece evidente que, quer o leque de cursos e de futuras profissões que podem seguir no futuro, quer as perspetivas de empregabilidade que podem ter depois de concluído o percurso académico que, na maior parte dos casos, passa por prosseguir para o ensino superior, terão sido argumentos importantes na opção que fizeram no ensino secundário.

Deste ponto de vista, também cada um dos cursos científico-humanísticos disponíveis parece posicionar-se diferentemente, sendo que alguns, percecionados como mais “abrangentes”, no sentido em que permitem o acesso a mais cursos superiores, ou como tendo “mais futuro”, no sentido em que aumentam as perspetivas de empregabilidade
pós-curso, são vistos como a melhor escolha, relativamente às restantes, ainda que num contexto de alguma indefinição. Entre estes parecem estar, em particular, os cursos de Ciências e Tecnologias e de Ciências Socioeconómicas.

Curiosamente surgiram algumas referências que associam a possibilidade de escolha de um percurso educativo/ formativo em TICE à necessidade de optar, logo no ensino secundário, pela via profissional, em detrimento da via regular.

“Eu quero seguir para o ensino superior. As novas tecnologias sempre me fascinaram e adoro ler sobre as criações que estão a ser inventadas e o modo como nos influenciam na vida […] estive quase a ser influenciada a ir para um curso profissional […]. Estou em humanidades. Talvez faça algo ligado à comunicação” (F, 15 anos, CCH Línguas e Humanidades)

“Eu antes de decidir seguir por um curso de economia, pensei em informática, mas achei que era uma área…eu não quero seguir um curso profissional. E como queria seguir para a faculdade…” (M, 15 anos, CCH Ciências Socioeconómicas)

Estas referências vêm também na linha do que os professores de TIC/ Informática entrevistados disseram. De certo modo, estes testemunhos revelam o contacto limitado e descontinuado que os alunos têm, ao longo do seu percurso escolar, com a aprendizagem das TIC, nomeadamente com uma aprendizagem que permita explorar ou aprofundar conteúdos que vão para além das TIC na ótica do utilizador, e a perceção de que essa opção apenas estará disponível, nesta fase, para aqueles que enveredam pela via de ensino profissional no secundário. Uma opção que, aliás, parece ficar afastada para alunos que estão no ensino regular e cuja motivação principal passa pelo prosseguimento de estudos. Com efeito, ainda que este prosseguimento seja também possível para quem vem do ensino profissional, esta é uma opção secundarizada por estes alunos.

As escolhas por exclusão

As escolhas motivadas por “exclusão de partes” são igualmente referidas. Estas remetem normalmente para razões como a “fuga” a disciplinas que não gostavam, onde tinham baixos desempenhos, ou nas quais as expectativas de sucesso no ensino secundário e superior são muito reduzidas, sobretudo em cursos em que essas disciplinas sejam nucleares e em que o grau de exigência aumenta. Entre as disciplinas mais referidas, estão geralmente a matemática e a físico-química.

“Escolhi vir para línguas e humanidades por exclusão de partes. No ensino básico tinha dificuldade em matemática” (F,17 anos, CCH Línguas e Humanidades)

“Eu fui para línguas e humanidades porque não era suficientemente inteligente para ir para ciências. Cursos profissionais eram horários muito pesados, os desportos também não… Línguas pareceu-me um curso simples, onde se tiram notas razoáveis, sem suar muito” (M, 17 anos, CCH Línguas e Humanidades)

“Eu estive indeciso entre ir para ciências ou para economia. Mas em ciências tinha a físico-química e a biologia e era preciso estudar muito…” (M, 17 anos, CCH Ciências Socioeconómicas)
“Eu escolhi humanidades mas quando escolhi eu não sabia bem o que queria. Sei que não queria as outras” (M, 19 anos, CCH Línguas e Humanidades)

“Línguas não sou muito boa... curso profissional não queria. Teve mesmo que ser ciências” (F, 17 anos, CCH Ciências e Tecnologias)

“Eu não gostava de línguas, nem de história, nem de ciências...por isso acho que me ia safar melhor aqui, nesta área (M, 16 anos, Ciências Socioeconómicas)

Os que estão em cursos TICE...o interesse e a motivação pelas tecnologias

Um das razões mais pronunciadas pelos jovens que estão em cursos TICE – quer aqueles que já os escolheram no secundário (via profissional), quer os que frequentam cursos CET e TeSP no pós-secundário ou os que acabaram de entrar para um curso superior – é que o fizeram “porque gostam”. Estes jovens expressam, de uma forma muito evidente, o seu gosto e a sua vocação, desde pequenos, por computadores... ou, como, por vezes, referem por “tudo o que é tecnologia”.

“Eu vim para a área de tecnologia porque gosto de máquinas” (M, 18 anos, CA Eletrónica, Automação e Comando)

“Escolhi este curso porque sempre gostei de computadores” (F, 16 anos, CP Gestão e Programação de Sistemas Informáticos)

“Eu gosto bastante de informática, gosto de tudo o que tem a ver com tecnologia” (M, 16 anos, CP Gestão de Equipamentos Informáticos)

“A expressão dessa vocação, desde pequenos

A expressão dessa vocação, ou desse gosto, é muitas vezes reportada ao período de infância. Desde pequenos que terão mostrado interesse em perceber “como as coisas funcionam”, desde brinquedos a utensílios habitualmente disponíveis e acessíveis no ambiente natural de crianças, em casa, ou mais tarde, relativamente a computadores, telemóveis, consolas ou outras tecnologias a que foram progressivamente tendo um acesso mais generalizado.

62
As suas expressões revelam um interesse intrínseco por tecnologia, uma curiosidade quase inata e permanente e um sentimento de espanto contínuo pelo mundo da tecnologia, ainda que muito frequentemente tenha sido cultivado e proporcionado por influência de outros próximos e por ambientes de socialização próprios, como veremos mais adiante, na seção em que se exploram as influências nas escolhas destes jovens por percursos escolares vocacionados para as TICE.

“Tenho interesse nesta área, montar, desmontar, saber ligar” (M, 19 anos, CA Eletrónica, Automação e Comando).

“Tive algumas bases, tinha motivação e curiosidade nesta área e gosto muito de eletrónica e telecomunicações” (M, 16, CA Eletrónica, Automação e Comando)

“Eu já tinha interesse nestas áreas. Acho piada a esta área. Fico espantado como é que acontecem, há sempre inovações na área da tecnologia” (M, 16 anos, CA Eletrónica, Automação e Comando)

“Eu escolho o curso porque gosto de informática, no sentido geral. Sempre tive interesse desde criança e acabei por vir para o curso que achei que se adequava mais” (M, 16 anos, CP Gestão e Programação de Sistemas Informáticos)

“Sempre gostei disto, sempre gostei de peças, de montar e desmontar… ou vinha para este curso ou ia trabalhar (M, 34 anos, CET Automação, Robótica e Controlo Industrial)

“Acho que também pelo facto de sermos jovens, estamos ligados às tecnologias. Nos dias que correm, a tecnologia está em todos os sítios que nós podemos encontrar, sendo a informática que nos ajuda também a perceber mais coisas. …Há necessidade de saber mais… da forma como funciona e assim” (M, 17 anos, CS Informática)

“E tinha os computadores e eu passava horas e horas a olhar para aquilo e achava que, lá esta…acabei por, se calhar, achar o gosto e a piada. E ao longo desses anos, tudo que aparecia de novo e tudo que fosse recente a nível tecnológico eu achava sempre graça e queria saber sempre mais sobre isso. […] Eu estou a falar de muito pequeno, eu tinha para aí 6 anos. O primeiro computador deve ter sido para aí aos 10 ou aos 11.” (M, 18 anos, CS Informática)

A procura de cursos práticos, mais orientados para o trabalho

A grande maioria dos jovens entrevistados que optaram por um curso profissionalizante, no ensino secundário ou no pós-secundário (um CET ou um TESP) referem, a importância que o carácter prático destes cursos, mais orientados para o trabalho, teve na sua escolha. Este é um argumento que é, aliás, comum também entre aqueles que não escolheram cursos TICE.

Embora o gosto e a vocação para as áreas das TICE seja evidente, para este segmento de jovens, a possibilidade de prosseguirem os seus estudos nestas áreas em cursos desta natureza terá sido também decisiva. Para muitos, certamente que seguiram a sua formação em TICE teria sido afastada ou inviável caso tivessem que a fazer apenas pelo ensino geral.
São vários os argumentos que nos foram invariavelmente apresentados: o da dificuldade maior no ensino geral, sobretudo nos cursos de ciências e tecnologias, face à dos cursos de dupla certificação nestas áreas; o do caráter mais teórico dos primeiros face à natureza mais prática dos segundos; o da orientação para prosseguir para o ensino superior, sem grandes perspetivas de entrar no mercado de trabalho apenas com o 12º ano, nos primeiros, quando comparada com a possibilidade, mais interessante na perspetiva destes jovens, de poder começar a trabalhar, numa área que gostam e têm qualificações, combinada com o facto de poderem também prosseguir para o ensino superior.

“Inicialmente eu estava em Ciências e Tecnologias mas a minha prioridade não era ir para a universidade. Então, eu escolhi um curso profissional porque, mesmo que eu quisesse ir para a universidade, eu poderia ir e se não quisesse, eu tinha uma área para depois ir trabalhar” (F, 16 anos, CP Gestão e Programação de Sistemas Informáticos)

“Acho que o ensino regular é mais difícil e neste curso há menos aulas teóricas e a matemática é menos exigente. Gosto desta área e das TIC. Além disso, gosto das saídas profissionais do curso” (M, 15 anos, CP Multimédia)

“Basicamente temos o estágio, numa escola básica não teria, temos contacto com o local de trabalho, é diferente.” (M, 14 anos, CA Eletrónica, Automação e Comando)

“Nos saímos do centro com 12ºano e saímos com uma carteira profissionalizante. Mesmo quem queira logo sair para o mundo do trabalho já sabe o que vai fazer.” (M, 16 anos, CA Eletrónica, Automação e Comando)

“Eu nunca gostei muito de estudar, soube que tinha muita prática…e gostei.” (M, 14 anos, CA Eletrónica, Automação e Comando)

Então e a matemática e a física?

Entre os alunos que estão no ensino secundário geral, disciplinas como a matemática e a física, suscitam, de facto, motivações muito diferenciadas. Se, por um lado, constituem o motivo para optar pelos cursos científico-humanísticos em que elas são nucleares, porque “gostam” dessas disciplinas e porque têm tido trajetórias de sucesso no seu desempenho, por outro lado, para muitos outros alunos, elas são também o motivo para não escolher esses cursos e optar por outros, em que essas disciplinas têm um grau de exigência menor, ou deixam mesmo de fazer parte do currículo. Ainda assim, são vários os alunos que expressam as dificuldades que têm a matemática e a necessidade de esforço adicional, sobretudo quando esta é uma disciplina fundamental no curso que escolheram no secundário e para o acesso ao ensino superior na área que pretendem.

“Nunca tive problemas a matemática. Nunca foi também uma disciplina complicada” (F, 15 anos, CCH Ciências Socioeconómicas)

“Se for mais ligado com números…nunca me meteu medo” (F, 15 anos, CCH Ciências Socioeconómicas)
“Eu sempre gostei. Aliás sempre quis seguir algo relacionado, achei que tinha mais a ver comigo” (M, 15 anos, CCH Ciências Socioeconómicas)

“Sempre fui boa a matemática e ajuda-me no que quero seguir: arquitetura” (F, 15 anos, CCH Artes Visuais)

“Quanto à matemática, no básico eu fui descendo as notas…tinha 5 nos primeiros anos e depois acabei com 51% no exame do 9º ano. Mas acho que me esforçando…consigo. Sei que não é fácil, mas quero mesmo” (M, 15 anos, CCH Ciências e Tecnologias)

“A matemática sempre me correu pior, mas eu estou a fazer os possíveis para conseguir ter médias suficientes para conseguir entrar para a universidade” (F, 16 anos, CCH Ciências e Tecnologias)

“Físico-química tenho que ter explicação. Eu preciso, estou em ciências” (F, 15 anos, CCH Ciências e Tecnologias)

“Eu não gosto nada de matemática mas tem que ser. Nós temos geometria descritiva…” (M, 15 anos, CCH Artes Visuais)

“Eu não gosto de matemática e acho que foi um bocadinho por isso também que escolhi ir para humanidades. Foi um alívio” (M, 19 anos, CCH Línguas e Humanidades)

Alguns dos alunos em cursos de dupla certificação nas áreas de TICE, terão já frequentado cursos de ciências e tecnologias no ensino geral, optando a dada altura por um percurso escolar profissionalizante, o que lhes proporcionará um desempenho mais satisfatório em disciplinas desta natureza. Os que não o fizeram, e prosseguiram diretamente para esta via do secundário, sentem-se “confortáveis” nestas disciplinas, sobretudo com a forma como elas estão integradas nos programas destes cursos. Referem-se especificamente às suas exigências – que consideram ser menores face às do ensino geral – mas também ao facto, mais atrativo do seu ponto de vista, de “perceberem para que serve”, porque as aplicam, de uma forma mais imediata e perceptível nas componentes de formação tecnológica e prática destes cursos.

“[Disciplinas como a matemática] são adaptadas ao curso, o que nos facilita. Há coisas que não nos interessa saber, que nos dão no ensino regular, que não nos vão servir de nada para o resto da vida e aqui eles vão adaptar as disciplinas conforme o curso que temos” (M, 16 anos, CP Informática/ Sistemas)

“Eu vou dar um exemplo do meu curso: eu estou a dar matemática básica este ano e que queria entrar num curso superior e provavelmente não vou ter bases para entrar com a matemática desta escola” (M, 18 anos, CP Eletrónica, Automação e Comando)

“Eu andava em Ciências no ano passado para depois ir para engenharia informática; só que eu, a minha pior disciplina era a biologia e eu acho que não necessito de biologia. Aqui todas as disciplinas que tenho, vou precisar” (M, 16 anos, CP Informática/ Sistemas)
Os alunos em cursos superiores em TICE consideram, de uma forma geral, que são disciplinas necessárias, sobretudo a matemática. Reconhecem, no entanto, que são disciplinas difíceis e que isso pode limitar que mais alunos escolham estes cursos, sobretudo no acesso ao ensino superior.

“A matemática é fundamental para a informática por causa da parte lógica. Mas a física não será tão necessária. E sim, acho que é um bocado mais complexo do que as outras” (M, 17 anos, CS Informática)

“Procurei engenharia, não fugi à matemática. Mesmo não sendo um aluno brilhante, sempre gostei de eletricidade e terei de trabalhar na área” (M, 17 anos, CS Engenharia Eletrotécnica e Computadores)

E a programação?

As motivações para a escolha de cursos em TICE, especialmente os da área das ciências informáticas, inclui, para uma larga maioria dos jovens entrevistados, o gosto explícito pela programação. Alguns, não muitos, já têm algumas bases porque as procuraram espontaneamente e as aprenderam em ambientes informais, pesquisando e explorando os recursos disponíveis na “net” e com amigos, irmãos ou pais curiosos ou profissionais nestes áreas. Outros porque tiveram acesso a formação inicial em programação no secundário. São, no entanto, muitos os alunos que reconhecem que não têm bases suficientes em programação – “no início é complicado…é uma questão de habitação, mas vai ser útil” - embora gostem e queiram aprender mais.

“Eu gosto de programar de vez em quando…vejo na net como se faz acho giro. Sempre gostei destas coisas…talvez um dia aprenda mais num curso de engenharia” (M, 16 anos, CCH Ciências Socioeconômicas)

“O curso é baseado em matemática, mas tem mais programação e eu gosto de programar” (M, 19 anos, CS Engenharia Informática)

“Não fugi à matemática, vim pelo gosto pela matemática e programação” (F, 17 anos, CS Engenharia Informática)

“ […] Porque eu gosto e porque também tenho influências familiares, também ligadas à informática. Eu gosto disto desde a infância. E também tive o secundário relacionado com isto. […] Tive aplicações informáticas (F, 18 anos, CS Informática)

“Eu vim para este curso porque gosto de programar…tudo o que tenha a ver com computadores eu gosto” (M, 16 anos, CP Gestão e Programação de Sistemas Informáticos)

“Vim para este curso porque quero aprender mais sobre programação […]” (M, 18 anos, CP Gestão e Programação de Sistemas Informáticos)

1.2. As influências na escolha do curso e o acesso a informação sobre cursos e profissões
As opções que os jovens no ensino secundário fazem relativamente ao seu percurso escolar são geralmente muito influenciadas pela família. Embora elas sejam condicionadas por inúmeros outros fatores, de natureza mais intrínseca, e que se prendem com os gostos e motivações dos próprios jovens, ou de natureza mais estrutural, nomeadamente com o seu percurso educativo prévio, de maior ou menor desempenho nalgumas disciplinas, o contexto de proximidade – de socialização em família e com os seus pares – tem geralmente uma significativa preponderância, sobretudo na faixa etária em que estes jovens se encontram. Esta influência tende naturalmente a esbater-se à medida que essas escolhas se vão fazendo na fase adulta, nomeadamente já em prosseguimento de estudos em ensino superior, mas, ainda assim, terão sido também, em parte, condicionadas pelo percurso educativo prévio.

Os pais, as suas profissões e a importância da empregabilidade futura

No ensino secundário geral, os alunos entrevistados expressam frequentemente o papel que os pais assumiram na decisão que tomaram quando, no 10º ano, tiveram que escolher um dos cursos científico-humanísticos. Apesar da aparente liberdade de escolha dada pelos pais, estes terão sido particularmente atentos à necessidade de optar por uma área “com futuro” o que “dê mais saídas profissionais”, um argumento, aliás, já evidente quando se questionou os alunos sobre as razões da escolha do curso em que estão. Estes argumentos parecem pesar na decisão sobretudo daqueles jovens que estavam ou estão ainda indecisos quanto ao curso ou profissão a seguir.

“Tive o apoio de uma psicóloga na escola. Decidi optar por ciências e tecnologias, deu mais alto nos psicotécnicos. Os meus pais recomendaram-se que fosse para uma área com mais saída” (M, 15 anos, CCH Ciências e Tecnologias)

“Os meus pais pressionaram-me um bocadinho. Não me querem ver no desemprego” (F, 17 anos, CCH Ciências e Tecnologias)

A influência dos pais faz-se notar também pelas suas próprias profissões ou vocações. O contacto dos jovens, desde pequenos, com essas realidades, em contexto de socialização familiar, propicia-lhes uma percepção mais clara do trabalho e das profissões que os próprios pais exercem, gerando maiores ou menores processos de identificação. Por outro lado, o focus-group realizado com alguns pais, cujos filhos estão em idades e anos de escolaridade do ensino secundário, revelou que embora os pais possam dar um apoio próximo aos filhos, no esclarecimento das dúvidas quanto ao seu percurso, esse apoio é em boa parte condicionado pelo próprio conhecimento que os pais têm das realidades profissionais e que “há áreas que eles estão mais vocacionados do que outras” (usaram muitas vezes a expressão "é genético"...).

“Eu desde p 7º ano que sempre gostei de química. Era um bocadinho imposto pelos meus pais. A minha mãe punha-me os trabalhos mesmo à frente e via mesmo se eu fazia. Apesar de eu gostar de artes, os meus pais também me impingiram, fui muito treinada. A minha mãe é engenheira, programadora de informática, e o meu pai é de eletricidade e mecânica” (F, 17 anos, CCH Ciências e Tecnologias)
“Eu escolhi artes um bocadinho influenciada pela minha mãe. Ela também estudou artes” (F, 15 anos, CCH Artes Visuais)

“Acabei por escolher economia porque a minha mãe já está na área e sempre gostei daquilo que ela faz e tinha uma certa curiosidade. Ela tirou gestão e contabilidade” (F, 15 anos, CCH Ciências Socioeconómicas)

“No meu caso eram os meus pais, porque ambos são artistas. A minha mãe é bailarina profissional de dança contemporânea, o meu pai é músico” (F, 16 anos, CCH Artes Visuais)

“Eu tenho família na área de economia...alguns são comerciantes, a minha tia é contabilista [...] E eu faço de tesoureiro numa associação religiosa...já estou habituado a estas áreas” (M, 15 anos, CCH Ciências Socioeconómicas)

“A minha mãe é professora de matemática e sempre me incentivou a gostar das áreas mais científicas.” (M, 17 anos, CCH Ciências e Tecnologias)

Esta influência é notada tanto entre os jovens que estão na via de ensino secundário geral, nomeadamente na escolha dos cursos científico-humanísticos, como entre aqueles que se optaram pela via de ensino profissional. Quer esta opção é, ela própria, encarada pelos pais de modo diferenciado, quer a escolha do curso é muitas vezes influenciada pela própria profissão e experiências de educação e trabalho dos pais. Nomeadamente, entre os jovens que estão em cursos profissionais em TICE, a influência dos pais que trabalham, estudaram ou são curiosos nestas áreas está muito presente. Nalguns casos, os pais terão já frequentado a mesma escola e o mesmo curso que o aluno escolheu. Esta é uma influência que também surge nos testemunhos de jovens que estão em cursos profissionais, noutras áreas, não-TICE.

“Fui influenciado pelo facto de o meu pai estar ligado à informática, o que fez com que, desde muito cedo, eu tivesse um gosto especial pelos computadores e pela eletrónica (M, 15 anos, CP Eletrónica, Automação e Computadores)

“O meu pai falou-me desta escola. O meu pai tirou o curso aqui. Foi em telecomunicações” (M, 18 anos, CA Eletrónica, Automação e Comando)

“Quem em influenciou no curso foram os meus pais porque têm um café e estão ligados à área de negócio” (F, 18 anos, CP Comércio)

“Eu escolhi este curso porque desde pequenina que estou ligada à área da mecânica pelo facto de os meus pais terem uma oficina e, desde sempre, me interessou saber mais do que aquilo que o meu pai faz” (F, 15 anos, CP Mecatrónica)

“Fui aconselhado pelos meus pais. Eles viam-me horas ao computador e diziam-me «tu vais seguir isso»” (M, 16 anos, CP Gestão e Programação de Sistemas Informáticos)

Do ponto de vista dos psicólogos de orientação vocacional que entrevistámos, foi também salientada a grande importância da família na escolha dos percursos/ opções escolares dos jovens. Não apenas esta é condicionada pela experiência de trabalho dos pais e pela perceção que têm relativamente às perspetivas de empregabilidade, diferenciadas por áreas/ cursos, como também há normalmente expetativas de progressão para o ensino superior. A opção pela via de ensino profissional no ensino
secundário ainda é estigmatizada, embora ela permita o prosseguimento de estudos para o ensino superior. Ou como um dos alunos entrevistados refere: “Eu quis seguir um curso profissional no secundário, mas os meus pais não viram isso com bons olhos…há um estereótipo” (M, 17 anos, CCH Ciências e Tecnologias).

Os irmãos, com experiências bem-sucedidas de educação e emprego

Os irmãos mais velhos surgem também com uma forte influência, especialmente entre os jovens que optaram por cursos profissionais em TICE. O facto de terem irmãos que já fizeram o mesmo curso, ou outro semelhante, e terem sido bem-sucedidos no mercado de trabalho constitui uma referência importante para muitos destes jovens. Por outro lado, irmãos com gosto, vocação e curiosidade pelas TICE parecem também proporcionar um ambiente, próximo e informal, de exploração destas tecnologias e de aprendizagem contínua, que terá suscitado vocações e motivação para que alguns destes jovens optassem por um percurso de educação e formação vocacionado para as TICE. No ensino secundário geral, a escolha dos cursos científico-humanísticos feita na transição do 9º para o 10º ano, pode também ser influenciada pelas escolhas já feitas por irmãos mais velhos, aliás, como também é reconhecido pelos pais que entrevistámos.

“A minha irmã também já tinha ido para artes. E a minha mãe sempre gostou…”
(F, 15 anos, CCH Artes Visuais)

“Eu, na hora de escolher, estava um bocadinho «a nora». Interessava-me por quase tudo. Os meus primos que tinham todos ido para ciências, a minha irmã…já tinha os livros, já tinha tudo…e pareceu-me a escolha mais adequada” (F, 18 anos, Ciências e Tecnologias)

“As escolhas dos colegas e amigos”

As influências de proximidade, na escolha de percurso de educação e formação possíveis no ensino secundário alargam-se, como seria de esperar, aos colegas e amigos.
O contexto de socialização e de referência entre pares está muito presente nestas idades e as escolhas, as preferências e as experiências de colegas e amigos, da mesma idade ou mais velhos, da escola ou de outros contextos de proximidade, são fatores importantes nas opções dos jovens e inclusivamente no seu sentido de pertença e identidade. Esta influência alarga-se, nalguns casos, não apenas à decisão sobre o curso, como também à escolha da escola.

“Foi mais pelos meus amigos. Eles foram muitos para a área de economia” (M, 15 anos, CCH Ciências Socioeconómicas)

“Fui influenciada por um colega que já estava em humanidades e me ajudou a decidir. Ele falou-me e disse-me que eu tinha mais aptidão para esta área” (F, 17 anos, CCH Línguas e Humanidades)

“A mim quem me influenciou foram os meus colegas. Falaram-me muito bem do curso em si e da escola e, portanto, decidi vir para cá” (M, 15 anos, CP Mecatrónica)

“Os meus amigos disseram-me para escolher este curso porque até os poderia ajudar, mais tarde, a resolver os seus problemas com os PC. E como gosto desta área, acabei por seguir os conselhos deles” (M, 16 anos, CP Gestão de Equipamentos Informáticos)

“Quem me influenciou foram os meus colegas que já cá andavam neste curso, que estão agora no 11º ano. Falaram-me dos projetos que faziam. Foi também o facto de falar com amigos e colegas meus que andaram em cursos destes e estão, neste momento, a trabalhar e as potenciais empresas que contratam jovens aqui […]” (M, 15 anos, CP Eletrónica, Automação e Computadores)

Algumas “ninguém” – “fui eu que decidi…porque gosto”

Há também alguns jovens que não reconhecem a influência de alguém, em particular, na escolha que fizeram. São normalmente os mais decididos sobre “o que querem estudar ou trabalhar” remetendo essa decisão para o facto de saberem “o que gostam ou sentem vocação”, nalguns casos, até contrariando as expectativas daqueles que lhe são mais próximos.

“Eu estava indeciso entre economia e ciências. Os meus pais sempre me disseram para eu pensar no que era melhor…embora o meu pai achasse que eu devia ter ficado em ciências. Ele trabalha em eletricidade e pensou que eu pudesse seguir uma engenheria” (M, 17 anos, CCH Ciências Socioeconómicas)

“Eu estou em línguas e humanidades mas todos me incentivaram para ir para ciências e tecnologias devido às minhas capacidades. Mas pensei em mim e não me ira sentir bem em ciências e tecnologias. Era mais feliz aqui…” (M, 16 anos, CCH Línguas e Humanidades)

“Ninguém. Fui eu que pesquisei informação e não tive influências nem opiniões de ninguém” (M, 15 anos, CP Multimédia)
“Eu vim para este curso por opção minha. Vim porque gostava. Gosto de tecnologia e quero aprender a programar” (M, 16 anos, CP Gestão e Programação de Sistemas Informáticos)

“Não tive ninguém que me influenciasse no curso e para decidir vir para cá. Fui eu que pesquisei informações” (F, 15 anos, CP Multimédia)

“A mim foram mais os meus interesses. Gosto desta área e não pensei duas vezes” (M, 16 anos, CP Eletrónica e Telecomunicações)

Os psicólogos da escola e a orientação vocacional

A generalidade dos alunos entrevistados teve acessos aos serviços de orientação e psicologia das escolas, sobretudo na transição do 9º ano para o 10º ano, quando é necessário fazer opções quanto à escolha das vias de ensino no secundário e dos cursos (científico-humanísticos na via geral; cursos de dupla certificação, na via profissional). A forma como percecionam esse apoio dos psicólogos da escola e, em particular, a realização de testes vocacionais, é, no entanto, difusa. Nalguns casos, terá sido importante para consolidar expectativas e preferências, noutras para despistar interesses e indecisões entre mais do que uma área/curso ou via profissional, noutras casos, porém, não terá ajudado significativamente – ou por serem demasiados generalistas, do tipo “várias áreas possíveis”, ou por serem até descoincidentes com o que gostavam ou já sabiam que queriam seguir. Nestes casos, não parecem ter-lhes atribuído grande importância. Os pais que entrevistámos referiram, nomeadamente, a importância que teria se este acompanhamento começasse mais cedo (no 5ºano, 6ºano...).

“Eu fui guiada por uma psicóloga, fiz os testes e acabou por me dar economia” (F, 17 anos, CCH Ciências Socioeconómicas)

“Eu estava indeciso entre vir para humanidades ou ir para um curso de artes do espetáculo. Fiz os testes que me ajudaram na decisão” (M, 19 anos, CCH Línguas e Humanidades)

“Fiz testes psicotécnicos e deu mais saídas para ciências e tecnologias. Mas eu quis ir para artes.” (F, 15 anos, CCH Artes Visuais)

“Eu fui ao psicólogo mas deu-me várias áreas…eu depois escolhi uma delas. Nós estivemos pouco tempo com a psicóloga” (F, 17 anos, CCH, Línguas e Humanidades)

“Eu achei as orientações de psicologia confusas. Disseram-me «tens que seguir uma coisa que gostas mas uma coisa que também tenhas boas notas» …e eu fiquei baralhada” (F, 15 anos, CCH Artes Visuais)

Entre os alunos que frequentam cursos profissionais, as referências ao apoio dos serviços de psicologia e orientação das escolas nesta fase são menores e sobretudo, mais dirigidos à escolha da via de ensino e à informação sobre os cursos disponíveis na oferta das escolas.

Alguns professores
Nalguns casos, os professores terão tido também um papel importante, informando, orientando ou inspirando as escolhas dos alunos. Este é, aliás, um papel que os pais entrevistados sublinharam, nomeadamente no sentido de incentivar a que mais jovens queiram seguir as áreas TICE. Os professores de TIC e das áreas disciplinares científicas, como a matemática, são apontados como as pessoas que “mais influenciam os miúdos, através da maneira como as aulas são dadas, os métodos de estudo, o contacto com programas (softwares) …”. Acham que os conteúdos devem ser adaptados às novidades tecnológicas e atenderem às motivações dos alunos. Na sua opinião, consideram que a generalidade dos pais “não tem o conhecimento científico necessário para os ajudar nestas disciplinas”.

“Foi um bocado a escola em si porque tive conhecimento que realmente o curso ia abrir pelos professores. E também por mim, por aquele desejo de realmente fazer o que quero, que é programação” (M, 17 anos, CP Gestão e Programação de Sistemas Informáticos)

“Fui mais inspirado pelos meus colegas do 9º ano que tinha muita gente que queria ir para desenho. Em Visual era muito competitivos…e houve um professor que era ator e pintor e ajudou-me bastante. Ele influenciou-me bastante” (M, 18 anos, Artes Visuais)

“A minha diretora de turma do 9º ano influenciou-me. Ela dizia que mais nenhum curso tinha futuro nenhum. Eu estava a pensar se ia para humanidades e ela disse logo «nem pensar, vais para ciências» ” (F, 17 anos, CCH Ciências e Tecnologias)

“Deram-me livros quando eu era mais pequeno. Livros de informática, os meus pais…e a minha diretora [de turma] também me influenciou e recomendou que viesse para estas áreas” (M,15 anos, CCH Ciências e Tecnologias)

O acesso a informação sobre cursos e profissões

Para além do papel que a família, os pares e a escola tem na escolha de percursos de educação e formação, os alunos fazem uso também da informação que existe sobre a oferta de cursos disponível. A pesquisa na internet, nomeadamente nos websites das próprias escolas e instituições de ensino superior, próximas dos seus locais de residência ou que pretendem frequentar, é o meio mais comumente referido. Também a informação disponibilizada na internet, pelo Ministério da Educação e Ciência, relativa ao acesso ao ensino superior, é habitualmente referido pelos jovens que já estão em cursos superiores.

Por outro lado, é muito frequente o recurso a outros mecanismos de informação institucional promovidos pelas próprias instituições de ensino e formação: mostras de oferta de cursos, panfletos, “dia aberto” das escolas e das instituições de ensino superior, visitas organizadas pelas escolas a universidades e politécnicos, seminários organizados por turmas desses cursos, sessões de apresentação da escola,…

A informação institucional disponível parece ser, contudo, muito mais centrada na oferta de educação e formação, do que no mercado de trabalho, nas profissões, carreiras e perspetivas de empregabilidade e mais focada nos recursos e capacidades das instituições de ensino e formação do que na mobilização de outros atores importantes -
como, por exemplo, ex-alunos com experiências de trabalho interessantes e carreiras bem-sucedidas, empresários da região ou em setores de maior empregabilidade, profissionais de referência nas áreas de formação dos alunos - que suscitem, nos jovens, uma motivação adicional ou uma melhor perceção do que é trabalhar nessas áreas e, para isso, do que é necessário estudar.

1.3. O uso e as competências em TIC

Aplicações móveis: práticas lúdicas

O quotidiano destes jovens está intimamente ligado ao uso das TIC. Fazem-no diária e intensivamente – como referem “estão sempre ligados” – e usam-nas para práticas lúdicas e de comunicação - jogar, estar nas redes sociais, tirar fotografias, ouvir música e ver filmes, navegar na net, comunicar com amigos… Mas através do telemóvel, e das aplicações móveis, do que do computador, mais em casa do que na escola, e mais ao fim-de-semana do que durante a semana, em período de aulas. As práticas de utilização das TIC são relativamente semelhantes entre os jovens que entrevistámos no ensino secundário, independentemente dos cursos e modalidades de ensino em que estão.

“Passo 4 ou 5 horas no computador, a jogar, nas redes sociais, email, a ouvir música e, de vez em quando, vejo um filme ou uma série” (M, 16 anos, CP Gestão e Programação de Sistemas Informáticos)

“Gosto de jogar online, sou viciado nisso” (M, 17 anos, CCH Socioeconómicas)

“Jogar, no computador e no telemóvel, league, legends, conter stike. Passo muitas horas. Também nas redes sociais. Agora eles “postam” tudo o que acontece no mundo, ou seja, eu tenho todo o tipo de informação nas redes, todos os acontecimentos no mundo, nós vemos nas redes sociais. No facebook, no twitter ou no instagram, aparece tudo. Uma coisa que toda a gente faz agora é ver vídeos e depois mostrar e partilhar. Acho que toda a gente aqui faz, não é só jogos” (M, 18 anos, CP Eletrónica, Automação e Comando)

“Eu uso mais as TIC ao fim-de-semana e em casa, mais ou menos 12 a 13 horas e durante a semana para aí umas 6 horas. Não uso tanto para o estudo, a não ser na escola. Em casa uso mais para estar no facebook, ir à internet, jogar, ir ao email, comprar vender coisas, ouvir música” (M, 15 anos, CP Multimédia)

“Eu uso diariamente, quase todo o dia, exceto quando estou a dormir ou quando estou a ter alguma conversa. De resto estou sempre a ouvir música ou a mandar mensagens ou nas redes sociais” (F, 16 anos, CP Gestão e Programação de Sistemas Informáticos)

“Praticamente todo o dia, o telemóvel. Em casa, vejo televisão, ouço música, vou ao computador. Por semana uso mais ou menos umas cinco horas de computador, fora da escola. Na escola, também uso o computador” (F, 16, CP Saúde)

“Vejo as redes sociais: facebook, skype, twitter, instagram. [Uso para fazer] uns trabalhos. Pesquisas. É mais ao fim do dia, quando chego a casa. No telemóvel é que é durante o dia todo. No computador, é uma hora, mais ou menos” (F, 15 anos, CP Multimédia)
Computador em casa e na escola, trabalhos para a escola

A utilização destas tecnologias para estudar, fazer trabalhos para a escola, pesquisar informação, aprender outras coisas que se interessam é também comum, embora pareça ser menos frequente – “quando é necessário”. Na escola, o recurso às TIC é feito mais intensivamente quando os cursos ou as disciplinas assim o exigem (TIC, Aplicações Informáticas, Laboratório de Multimédia,…), ou “noutras aulas quando os professores acham que é necessário”.

“Uso para estar no facebook, ouvir música, mas também uso para ir buscar informações para trabalhos ou para estudar. [Na escola], principalmente quando temos aulas no laboratório de multimédia ou com os tablets da escola noutras aulas. É quando os professores acham que é necessário trabalhar com computadores” (F, 17 anos, CP Multimédia)

“Usamos para pesquisar informações para as disciplinas” (F, 15 anos, CCH Ciências e Tecnologias)

“Nós temos salas de computadores aqui na escola. Também usamos para fazer trabalhos” (F, 15 anos, CCH Ciências e Tecnologias)

“Quando estudo, gosto de fazer os resumos no computador” (M, 19 anos CCH Línguas e Humanidades)

“Eu uso muito a internet para me dar auxílio nos desenhos, para me inspirar…no youtube tem imensos vídeos sobre materiais, etc…” (F, 16 anos, CCH Artes Visuais)

“Uso o powerpoint para trabalhos da escola” (M, 15 anos, Ciências e Tecnologias)

“Sei trabalhar com facilidade no word, no office…Pedem-nos mais apresentações” (M, 15 anos, CCH Ciências Socioeconómicas)

“Eu uso todos os dias, na escola e em casa. Quando me interesso por um assunto, o primeiro sitio onde vou procurar é à net” (M, 17 anos, CP Energias Renováveis)

Computador em casa, atividades de interesse pessoal

O uso do computador para explorar interesses pessoais – desporto, cinema, vídeo e imagem, música, … - é também referido. Trata-se essencialmente de atividades de natureza lúdica, mas em áreas e temas em que alguns jovens têm interesse, e que lhes permitem recorrer e explorar softwares diversos, normalmente em contextos de aprendizagens informais e de uma forma autodidata.

“Eu tenho um gosto pessoal por tratamento de imagem e de vídeo. Vejo concurso e concorro. A semana passada ganhei 5 bilhetes para ir ver o Benfica. Era o prémio” (M, 17 anos, CCH Socioeconómicas)

“Gosto de ver filmes e aliás, foi através da internet que aprendi melhor o inglês e passei a tirar dezassetes” (M, 17 anos CCH Ciências e Tecnologias)
“Eu também uso o computador para fazer compras e para fazer todo o tipo de coisas. Música, livros...também uso o movimaker. Gosto de satisfazer um hobby meu. Gosto de editar vídeos musicais. Uso o movimaker. E também gosto de legendar” (M, 17 anos, 19 anos CCH Línguas e Humanidades)

“Eu gosto de fazer pesquisas e vejo vídeos no youtube porque eu faço danças de salão e estou sempre a ver as competições” (F, 17 anos, CCH Ciências e Tecnologias)

“Faço edição de partituras musicais de peças que quero tocar. Toco percussão” (M, 17 anos, CCH Ciências e Tecnologias)

“A autoavaliação das competências em TIC

Quando questionados como avaliam as suas próprias competências de utilização das TIC, a maioria destes jovens reconhece, no entanto, que são limitadas, apesar da familiaridade que têm com estas tecnologias e do seu uso intensivo. Esta é, aliás, uma opinião relativamente comum mesmo entre os jovens que estão em cursos profissionais de TICE. O padrão de utilização das TIC não difere muito dos outros jovens, ainda que haja alguns que se autoavaliem de uma forma mais positiva, ou porque, até ao momento, as suas competências têm sido suficientes - “são boas para aquilo que preciso” – ou porque, têm tido oportunidade de as desenvolver, quer em contextos formais de aprendizagem, quer de uma forma informal. São naturalmente os alunos que frequentam o ensino profissional, em cursos de TICE (no 1º ano), que revelam mais expectativas de desenvolvimento destas competências. De uma forma geral, os rapazes tendem a autoavaliarem-se mais positivamente no uso das TIC do que as raparigas.

“Eu uso o computador, mais ou menos, uma a duas horas por semana, mas o telemóvel tem que andar sempre comigo. Todo o dia o uso para mandar mensagens, ouvir música, redes sociais. Competências são poucas” (F, 17 anos, CP Saúde)

“Eu passo o dia todo ligada à internet, a ouvir música, nas redes sociais, mas sou um pouco “tremida” na área das TIC” (F, 17 anos, CP Receção)

“Uso o computador mais ou menos quatro a cinco horas por semana e o telemóvel é desde que acordo até dormir. Uso o telemóvel para tudo, desde ir às redes sociais, mandar mensagens, ouvir música, jogar jogos. As minhas competências são as básicas no computador. Sei fazer trabalhos, aquilo que me pedem” (F, 16 anos, CP Comércio)

“Eu uso as TIC mais ou menos umas 5 horas por dia, para conversar com os meus amigos, na net e para procurar informação que me ajude a estudar. As minhas competências em TIC são boas para aquilo que eu preciso” (M, 16 anos, CP Gestão de Equipamentos Informáticos)
“Uso o telemóvel e o tablet para jogar e ver filmes. Não sei fazer coisas mais complicadas mas também não sinto necessidade disso” (M, 16 anos, CP Manutenção Industrial – Mecatrónica Automóvel)

“Eu passo o dia todo ligada à internet, no facebook e outras aplicações e a mandar mensagens. Considero-me mais ou menos boa nas áreas das TIC” (F, 15 anos, CP Mecatrónica)

“Eu quando uso as TIC no meu dia-a-dia é mais para jogar playstation, que jogo muitas horas. Considero que as minhas competências em TIC são boas (M, 16 anos, CP Mecatrónica)

“Para mim a informática fez parte do meu crescimento e não me imagino sem isso. Eu acho que as minhas competências em TIC são boas” (F, 17 anos, CP Multimédia)

Ainda assim, é destacar alguns exemplos que sugerem uma utilização mais diferenciada das TIC, ou porque têm interesse e “aprenderam sozinhos”, sendo que muitos destes recursos estão também cada vez mais disponíveis na internet, ou porque a frequência de cursos na área lhes permite uma maior exploração desses recursos. Referem-se a atividades variadas, como desenho e animação digital, criação e gestão de websites, criação de jogos, programação, montagem e reparação de hardware, instalação e configuração de softwares… atividades para as quais, de uma forma geral, parecem ter um motivação adicional e que lhes suscitam curiosidade, interesse em explorar e vontade de aprender.

“Eu uso para fazer desenhos digitais. Ultimamente faço animações tipo minisketches” (F, 19 anos, CCH Artes Visuais)

“Na minha escola, só tivemos TIC no 9º ano. Eu já sabia fazer algumas coisas. Sei, por exemplo, programar em HTML. Já fiz sites, uns jogos…aprendi sozinho” (M, 17 anos Ciências e Tecnologias)

“Utilizo as TIC para diversão e elaborar trabalhos para a escola. Também utilizei o blender para criação de personagens animadas. Considero que “mexo” bem mas preciso de aprender mais” (M, 16 anos, CP Eletrónica, Automação e Computadores)

“Gosto particularmente da área de produção de jogos e já criei, juntamente com os meus irmãos, um jogo” (M, 14 anos, CP Eletrónica, Automação e Computadores)

“Utilizo as TIC para “navegar”, jogar e fazer trabalhos para a escola. Também tenho alguns conhecimentos de programação de robots” (M, 16 anos, CP Eletrónica, Automação e Computadores)

“Não sou nenhum expert, mas faço habitualmente pequenas reparações no hardware e instalação e configuração de software em PC” (M, 17 anos, CP Eletrónica, Automação e Computadores)

“Uso as TIC diariamente para estar em contacto com os meus amigos que estão noutras escolas. Considero-me com bastantes competências nas TIC: sei criar vídeos, fotos, wallpapers, powerpoint, jogos, websites e blogues. Atualmente falo a
gestão de duas páginas de internet” (M, 15 anos, CP Gestão de Equipamentos Informáticos)

“Faço alguns sites…criação de websites; também faço alguns scripts, um bocado também baseado na algoritmia…assim, pequenos conceitos; alguma programação, mas muito pouco…ainda estou a aprender” (M, 17 anos, CP Gestão e Programação de Sistemas Informáticos)

“Eu passo muito tempo à frente do computador. Digamos que, em média, por fim-de-semana…eu acho que teria cerca de 13 horas. Basicamente a jogar e a falar com os meus colegas. [As minhas competências] é mais à base de hardware. Há pouco tempo construí um computador” (M, 18 anos, CP Multimédia)

TIC nos 7º, 8º, ou 9º anos: aprendizagens?

No ensino básico, a disciplina de TIC está contemplada no currículo do 3º ciclo. Apesar de todos os jovens no ensino secundário que entrevistámos, terem tido esta disciplina, no 7º, 8º ou 9º anos, quando questionados acerca das aprendizagens desenvolvidas então, uma boa parte mostra alguma dificuldade em concretizá-las. Referem-se à aprendizagem na utilização de softwares do office (word, powerpoint, excel…), necessárias inclusivamente para a realização de trabalhos para a escola, mas com uma exploração limitada. Reconhecem, de uma forma geral, que o tempo dedicado, por semana, à disciplina é muito curto (45 minutos), o que não terá permitido um maior domínio destes softwares nem a exploração de outras ferramentas.

“TIC no 7º e 8º ano…aprendemos word…não me lembro bem…” (M, 15 anos, CCH Ciências e Tecnologias)

“Nós tivemos no 9º ano. Não me lembro muito bem” (M, 17 anos, CCH Ciências Socioeconómicas)

“Nós jogávamos jogos, íamos ao youtube. Era só o power point e o excel” (M, 17 anos, CCH Ciências Socioeconómicas)

“Era só 45 minutos por semana, não era muito relevante. Fazíamos coisas básicas” (F, 15 anos, CCH Ciências e Tecnologias)

“Eu tive no 9º ano. No segundo ciclo, eu tive PraTIC, era um projeto que se misturava com as disciplinas. Eu estive num colégio privado…mas acho que sempre foi uma disciplina muito desvalorizada. Ninguém aprende só uns minutos por semana. Demos teoria também…eu nunca tive muito interesse na teoria. No 9º ano, fizemos coisas mais práticas e demos photoshop” (F, 15 anos CCH Ciências e Tecnologias)

“Eu tive algumas bases. Era o word, o excel e lembro-me de ter sido útil. Eu já tinha computador desde pequeno. Sempre gostei. Há coisas que já sabia mexer um bocadinho” (M, 17 anos, CCH Ciências e Tecnologias)

Alguns terão tido oportunidade de iniciar a aprendizagem de algumas linguagens de programação, outros gostariam de o ter feito, por interesse pessoal, ou porque punham inclusivamente a hipótese de seguir a sua formação nesta área.
“Nós tivemos um bocado de programação, mas muito básico. Usávamos o *scratch*” (M, 15 anos, CCH Línguas e Humanidades)

“Eu até gostei bastante da disciplina. Até estive para ir para programação, pensei nisso…” (M, 15 anos, CCH Ciências Socioeconómicas)

“Acho que aprendi a trabalhar no *excel* basicamente…gostava de ter aprendido programação, por exemplo” (M, 18 anos, CCH Ciências e Tecnologias)

“Eu tive algumas bases. Era o *word*, o *excel* e lembro-me de ter sido útil. Eu já tinha computador desde pequeno. Sempre gostei. Há coisas que já sabia mexer um bocado” (M, 17 anos, CCH Ciências e Tecnologias)

Aplicações informáticas no 12º ano: gosto pela área mas falta de oferta

O ensino das TIC volta a fazer parte do currículo escolar, no âmbito dos ensino secundário geral, com a disciplina Aplicações Informáticas B, opcional no 12º ano. Neste caso, já com uma componente de iniciação à programação, que pode corresponder às expectativas dos jovens com maior interesse nestas aprendizagens, ela parece também ser encarada tanto como uma disciplina mais prática, e por isso mais apelativa, como pela aparente facilidade em tirar melhores notas, comparativamente a outras opções disponíveis no ensino secundário, e desse modo constituir uma opção interessante para aqueles que procuram melhorar ou garantir a média final do ensino secundário.

“Eu tenho aquele gosto pela informática, mas não tenho muito tempo para explorar. Agora estou a perceber melhor na aula…Eu no 9º ano tinha altas notas, mas agora é um pouco diferente. Vamos dar *pascal* e *visual basic*” (F, 17 anos, CCH Ciências e Tecnologias)

“Nós estamos a aprender a programar com o *pascal* e ainda estamos nas partes básicas, estamos a aprender […]. Eu tinha necessidade de levantar a média e achei que era mais fácil em relação às outras disciplinas” (F, 17 anos, CCH Ciências e Tecnologias)

Contudo, nem sempre esta disciplina está disponível na oferta das escolas, apesar do interesse de alguns alunos na sua escolha. Com efeito, a disponibilidade de horários, professores, e outros recursos, a própria vocação da escola ou as opções que são tomadas do ponto de vista de organização interna, condicionam, nalguns casos, o seu efetivo acesso aos alunos do ensino secundário geral, no seu todo, quando a disciplina não é coberta pelo leque de ofertas da escola num dado ano letivo, ou a alunos de alguns dos cursos científico-humanísticos, mesmo quando a disciplina está disponível na escola.

“Não escolhi Aplicações Informáticas, escolhi Física e Química, apesar de gostar muito de informática. Nesta escola nunca há aplicações informáticas…” (F, 17 anos, CCH Ciências e Tecnologias)

“É só para ciências mas nós nem pudemos escolher. Era só para os alunos que também tinham escolhido física. Há uma turma que está a ser preparada para engenharias e é essa turma que tem física e aplicações informáticas” (F, 17 anos, CCH Ciências e Tecnologias)
“Na nossa perspetiva, a nossa escola escolhe determinadas disciplinas para determinados alunos e isso exclui as nossas opções. Para nós, só abriu Economia C e Geografia C. Mas havia muita gente que queria aplicações informáticas” (M, 17 anos CCH Ciências Socioeconómicas)

“Eu também gostava de ter [Aplicações Informáticas] mas não podia escolher” (F, 17 anos, CCH Línguas e Humanidades)

“No caso das ciências económicas, nesta escola, essa hipótese [de escolher aplicações informáticas] não nos foi dada” (M, 17 anos, CCH Ciências Socioeconómicas)

“Nós em humanidades também só tivemos opções que não incluíam essa disciplina” (F, 17 anos, CCH Línguas e Humanidades)

1.4. **Estudar e trabalhar em TICE: perceções e estereótipos**

Sobre a possibilidade de prosseguimento de estudos em TICE, entre os que estão no secundário geral?

Apesar da maior parte dos jovens entrevistados no ensino secundário geral querer prosseguir para o ensino superior, foram muito poucos os que referiram a intenção de escolher um curso em TICE, inclusivamente entre aqueles que frequentam o curso de Ciências e Tecnologias.

A não atratividade destas áreas, quer enquanto percurso académico, quer de trabalho, é em parte justificada pelo gosto ou vocação por outras áreas, já definidas, mas também pela falta de informação – porque não lhes terá despertado a atenção – mesmo entre os que ainda estão indecisos quanto ao curso superior que vão escolher ou entre os que estão em cursos científico-humanísticos no secundário cujas disciplinas específicas poderão permitir o acesso a formação superior em TICE.

“Nunca pensei nessas áreas. A minha área é mais línguas e não me interesso por tecnologia” (F, 17 anos, CCH Línguas e Humanidades)

“Não faz parte dos meus planos ir para uma área dessas” (M, 15 anos, CCH Ciências Socioeconómicas)

“Embora a tecnologia me fascine não é uma área que eu gostasse de ir. A minha irmã tem esse curso de informática e o meu cunhado está em robótica. Mas eu não me ia sentir bem...penso que ela escolheu essa área por influência dos jogos, ela jogava muito” (F, 16 anos, CCH Ciências e Tecnologias)

“Não pensei em seguir. Se o nosso curso [Ciências Socioeconómicas] desse para ir para esses cursos de engenharia…ia. Mas depende das médias.” (M, 17 anos, CCH Ciências Socioeconómicas)

“Tenho gosto por essas áreas, mas como não é muito falada, não pensamos nisso” (F, 17 anos, CCH Ciências Socioeconómicas)
Ainda assim, é interessante notar que alguns destes alunos não excluem essa hipótese, por vocação, e porque já decidiram, outros por se “sentem fascinados” pelo mundo das tecnologias digitais, independentemente dos cursos em que estão no secundário e de alguma indefinição relativamente ao que pretendem seguir. Valorizam o potencial de exploração destas tecnologias, em áreas diversas, a criatividade no seu uso e aplicação, a vontade de aprender a programar, sobretudo como ferramenta de trabalho para o desenvolvimento de novas soluções, ou sentem-se inspirados por figuras de referência na área das novas tecnologias.

“Quero seguir engenharia informática, em princípio. Sempre gostei…talvez vá para a FCT” (M, 16 anos, CCH Ciências Socioeconómicas)

“Em princípio, quero seguir informática, na FCT ou no Técnico” (M, 18 anos, CCH Ciências e Tecnologias)

“Esta área está relacionada com informática e é a área mais técnica que existe Eu sou autor de uns programas de cibermanagement…” (M, 17 anos, CCH Ciências e Tecnologias)

“Quero seguir gestão de alguma coisa…Talvez gestão de informação” (F, 17 anos, CCH Ciências Socioeconómicas)

“Eu quero seguir para o ensino superior. As novas tecnologias sempre me fascinaram e adoro ler sobre as criações que estão a ser inventadas e a modo como nos influenciam na vida (…) estive quase a ser influenciada a ir para um curso profissional (…) Estou em Humanidades, talvez faça algo ligado à comunicação.” (F, 15 anos, CCH Línguas e Humanidades)

“Desde pequena que eu tenho um fascínio por computadores…já sei programar, sei mexer em html e um bocadinho e Java. Estes programas como o adobe são fáceis de aprender de forma automática. Uso o youtube para perceber…mas gostava de saber programar como deve ser” (F, 17 anos, CCH Ciências e Tecnologias)

“As TIC sempre foi uma área que me fascinou por ser diferente. Por puxar mais pela nossa criatividade, coisas que nunca tínhamos ouvido falar. Acho que é uma área muito gira” (M, 15 anos, Ciências Socioeconómicas)

“Eu ainda não sei bem o que seguir, mas até estava a pensar seguir um curso na área tecnológica. Isso pode ter a ver com o facto de a minha mãe ser engenheira programadora. Não me vejo a seguir um curso de informática como trabalho principal, mas como ajuda…gostava de aprender a programar mas não ser só isso” (F, 17 anos, CCH Ciências e Tecnologias)

“Para mim, a minha referência é o Steve Jobs. Gostava de ter um percurso como ele…ele não desistiu, é preciso persistência” (M, 15 anos, CCH Ciências Socioeconómicas)

Alguns referem-se à importância das competências digitais e do uso das tecnologias aplicadas às áreas que escolheram e que gostariam de vir a trabalhar. Têm noção, sobretudo, da transversalidade destas tecnologias e do carácter cada vez mais imprescindível que a sua utilização e aplicação assume em várias profissões,
nomeadamente em domínios vastos como os das ciências, tecnologias, comunicação, gestão e artes.

“Eu quero seguir engenharia química. Tem os laboratórios e acho que a tecnologia está muito ligada” (F, 17 anos, CCH Ciências e Tecnologias)

“Eu quero seguir cinema e há partes que se cruzam [com as tecnologias digitais]…” (M, 18 anos, CCH Ciências e Tecnologias)

“Talvez na minha área das artes, pense em conciliar com design gráfico. Acho que tem muito emprego, tudo gira em torno disso: publicidade, jogos…” (M, 17 anos, Artes Visuais)

“Eu só iria para um curso nessas áreas se houvesse uma ligação com a área que eu gosto” (F, 15 anos, Artes Visuais)

Estes dados mostram, de certo modo, que a possibilidade de motivar mais alunos para percursos de educação/formação em TICE existe e que poderá ainda ser oportuna ao longo deste ciclo de ensino. Por um lado, pela expressão aparentemente considerável de indefinição com que as escolhas no ensino secundário se fazem, e relativamente às áreas e cursos que pretendem seguir. Por outro lado, pela percepção já muito evidente, entre alunos de áreas muito diversas (gestão, artes, design, arquitetura, outras engenharias,…), que as tecnologias de informação e comunicação e as competências digitais são cada vez mais necessárias para o estudo e para o trabalho nas suas áreas de preferência.

As percepções sobre cursos em TICE

Para além da existência ou não de motivações para o prosseguimento de estudos em TICE, outro fator condicionante dessa opção é a forma como estes cursos são percecionados pelos jovens. Estas percepções são construídas pelo maior ou menor interesse ou vocação por estas áreas, pela menor ou maior informação a que foram tendo acesso, de uma forma mais ou menos institucional, e pela exigência, ou dificuldade, com que encaram o acesso ao ensino superior nestas áreas, naturalmente que equacionado a partir das suas próprias trajetórias escolares.

“Eu quero ir para informática, mas sei que é uma área complicada. É preciso muito estudo, boas médias… vamos lá ver” (M, 18 anos, CCH Ciências e Tecnologias)

“As notas para entrar são muito elevadas. Algumas são de 18 para cima. E são poucas vagas” (M, 17 anos, CCH Ciências e Tecnologias)

“É uma área onde é preciso saber mesmo o que se faz. É preciso muitas horas a trabalhar nisso…muitos anos a estudar” (M, 15 anos, CCH Ciências Socioeconómicas)

“Eu estive num curso de verão na Universidade do Minho em engenharia de materiais. Era uma coisa que eu pensava seguir mas aquilo mexia muito com computadores…E não me imagino a fazer aquilo. Era incapaz de seguir uma engenharia. Envolve muita física, muita programação.” (F, 17 anos, CCH Ciências e Tecnologias)
Mas são também muito condicionadas por imagens estereotipadas sobre o que é estudar ou trabalhar em TICE. Referem, com muita frequência, que é preciso “talento” para estas áreas, um talento específico, um gosto ou uma vocação já definida. Esta é, aliás, uma expressão também utilizada pelos pais que entrevistámos “é uma questão genética e de vocação”. Esses pais acham, por exemplo, que a profissão de programador é “demasiado específica e requer talentos”. De facto, grande parte dos alunos que entrevistámos associam estes cursos à ideia de “programação”, uma atividade que geralmente lhes parece ser “complicada”, “trabalhosa”, que exige “grande concentração”, “estar o dia todo no computador” e, de certa forma, “aborrecida”…não porque tenham tido um contacto significativo com que a programação, ao longo do seu percurso escolar ou por iniciativa própria, mas mais pela forma como percecionam aquilo que outros, que normalmente lhe são próximos – amigos, colegas, pais –, fazem, quando estudam ou trabalham com informática.

“É preciso ter talento e enfoque” (M, 16 anos, CCH Línguas e Humanidades)

“É preciso muito talento para isso” (M, 19 anos, CCH Línguas e Humanidades)

“Eu não me imagino a estar o dia todo no computador.” (F, 17 anos, CCH Ciências e Tecnologias)

“Eu detesto trabalhar com computadores. Não tenho paciência para estar sentada. É preciso haver um gosto, é muito trabalhoso. É preciso estar muito tempo e é preciso gostar” (F, 17 anos, CCH Ciências e Tecnologias)

“Aquilo é muito complicado. Tenho amigos que estão a estudar programação e não me imagino mesmo nada…” (F, 17 anos, CCH Ciências e Tecnologias)

“O meu pai trabalha em programação e aquilo é bastante complicado. Não sei como é que a cabeça dele não «estoira». Ele tem que estar sempre acordado, aquilo requer muita concentração. Tem que se fazer o programa e depois…tentativa e erro” (M, 17 anos, CCH Ciência e Tecnologia)

“Eu não sei o que vou seguir, mas computadores não. Não tenho jeito suficiente para trabalhar nisso” (F, 17 anos, CCH Socioeconómicas)

Porquê esta percepção numa geração “digitally native”?

Uma questão intrigante é precisamente a de perceber porque é que uma geração rodeada de tecnologias digitais e que as usa de forma tão intensiva e familiar no seu quotidiano, perceciona a possibilidade de estudar nestas áreas de modo tão pouco apelativo. Esta foi uma questão que lançámos também aos alunos que entrevistámos, para percebê-los, a partir dos seus pontos de vistas, o que justifica esse desinteresse ou escassa motivação pela possibilidade de estudar ou de vir a trabalhar em TICE. As respostas que obtivemos foram muito interessantes. Revelam, nomeadamente, que a justificação existe e é clara para muitos destes jovens; que usar e gostar de usar estas tecnologias não é o mesmo que gostar ou querer trabalhar com estas tecnologias; que usar é “lazer” e é “fácil” mas fazer é “trabalho” e é “complicado”.

“Nos usamos a parte fácil, a parte divertida. As pessoas que criam o android ou o IOS criam tudo o que seja mais fácil para o utilizador. Usamos a parte fácil, não mexemos em códigos, etc. Estamos ligados, mas afastados! Quanto mais fácil para
nós, mais difícil para quem está por trás” (F, 17 anos, CCH Ciências e Tecnologias)

“Quando usamos é para nós, não é para trabalhar. Estamos connosco mesmos, estamos a descontrair. Se trabalharmos nisto deixa de ser fazer. Teríamos que ter paixão por isto para sermos profissionais” (M, 16 anos, CCH Línguas e Humanidades)

“Nós gostamos daquilo que já está criado. As redes sociais já estão criadas…Eu criar uma rede social não é uma coisa que eu gosto. Gostamos de usar e não de fazer” (F, 16 anos, CCH Ciências e Tecnologias).

“Eu gosto dessa área, mas como hobby… para trabalhar, não” (M, 15 anos, CCH Ciências Socioeconômicas)

“As pessoas vêm o outro lado. A maior parte das pessoas olha para a tecnologia como utilizadores e não como produtores de tecnologia” (M, 17 anos, CCH Ciências e Tecnologias).

Ou seja, na percepção destes jovens, o que separa o seu “quotidiano digital” de um quotidiano de estudo e trabalho em ciências informáticas parece ser um longo e exigente caminho, aparentemente desinteressante, para o qual “teríamos que ter paixão por isto para sermos profissionais”.

Os “geeks” da geração “digitally native”: percepções e estereótipos

Habitualmente conotados como pessoas peculiares ou excêntricas, na medida em que são diferentes dos seus pares, mais introvertidos e isolados, porque passam demasiado tempo com computadores, atraídos por tudo aquilo que são novidades tecnológicas e absolutamente focados em assuntos geralmente demasiado intelectuais e complexos, para aquilo que é habitual entre os jovens da sua idade, ser considerado um geek ou um nerd da informática pelos seus pares pode ser um atributo depreciativo e, neste sentido, socialmente pouco aceite ou pouco apelativo entre os jovens.

De facto, a forma como os jovens, entre si, “olham” para colegas e amigos que fazem da informática, mais do que um hobby, uma paixão, que são fãs de tecnologia e eletrónica, e que as exploram de uma forma muito mais sofisticada e intensiva do que é comum, mesmo numa geração nativa em tecnologias digitais, é um aspeto importante quando se pretende compreender as escolhas ou as não escolhas destes cursos. Estas percepções ou estereótipos podem tornar mais ou menos apelativa a escolha de um curso nestas áreas.

Embora muitos dos jovens que entrevistámos reconheçam essas imagens estereotipadas quando se referem a geeks, desvalorizam esses estereótipos - “isso é mais no secundário”, “é mais como uma brincadeira”, “é coisa de filmes”, “eu acho que vem mais de trás, porque agora qualquer um gosta de informática...agora já não é bem assim” – sobretudo porque os consideram ultrapassados. Desvalorizam, nomeadamente, o isolamento e o comportamento pouco sociável que lhes está associado, e apreciam o conhecimento, as capacidades e o interesse extraordinários, ou pouco comuns, que esses jovens têm nessas áreas. Alguns consideram que serem “chamados geeks” é um elogio, significa que “somos bons naquilo que fazemos”.

83
“Eu conheço amigos meus que gostam, mas vão para casa e estão sempre agarrados ao computador” (M, 16, CCH Ciências e Tecnologias)

“As áreas que eu gosto muitas têm a ver com o computador. E isso faz de si uma pessoa mais fechada? Eu acho que não. É a mesma coisa que uma pessoa passar muito tempo no escritório” (F, 19 anos, CS Educação e Comunicação Multimédia)

“Podem parecer mais isolados, mas há interesses comuns entre eles. Podem parecer mais antissociais, mas não…” (M, 15 anos, CCH Ciências Socioeconómicas)

“Eram aqueles que gostavam mesmo e viviam mesmo aquilo e só viviam para aquilo. Não têm vida social. Agora temos mais vida social e já conseguimos fazer uma relação entre estudar e vivenciar” (F, 20 anos, CS Informática)

“Eu acho que é fantástico ter alguém da nossa idade que se for preciso no futuro vá fazer algo para a nossa sociedade. Se eu tivesse os mesmos conhecimentos também fazia a mesma coisa. Eu adoro, é maravilhoso como é que a tecnologia nos pode ajudar nas mais diversas maneiras.” (F, 16 anos, CCH Ciências e Tecnologias).

“Muitos colegas nossos, os que querem ir para engenharias, só pensam em jogos. Eles percebem muito e até nos ajudam em algumas coisas quando precisamos” (M, 16 anos, CCH Ciências e Tecnologias)

“Ainda se ouve mas isso não é motivo de não ir para este curso” (M, 17 anos, CS Informática)

“Isso na minha opinião está mesmo fora. Chamarem-te um geek até acho que é um elogio, não é um insulto. Geek, nerd, para mim é um elogio: é que são os bons, somos bons naquilo que fazemos” (M, 18 anos, CS Informática)

Estes testemunhos, ainda que limitados, parecem indicar que estereótipos deste tipo, muito associados às tecnologias, e habitualmente presentes entre jovens com idades em que a aceitação social entre os seus pares é importante, terão já evoluído para uma conotação bem mais positiva.

Os que já estão em cursos TICE

Os alunos que já frequentam cursos em TICE, quer no ensino secundário profissionalizante quer no ensino pós-secundário, têm naturalmente uma percepção mais informada do que são estes cursos, embora todos os que entrevistámos estejam ainda no primeiro ano. O contacto que já foram tendo com os conteúdos dos cursos, ainda que numa fase inicial, o facto de terem já feito esta opção, como vimos, em muitos casos, motivada pelo seu próprio gosto e interesse pela área, e a natureza diferenciada destes cursos face aos do ensino geral, ou já numa fase posterior, de prosseguimento no ensino superior, condicionam certamente as suas percepções.

Uma grande parte dos jovens entrevistados referem-se aos cursos em que estão, como sendo “interessantes” e “desafiadores”, mas associando-lhes também a exigência da formação - “complicados” - nomeadamente no que se refere ao trabalho que requerem, em aula e fora das aulas, às bases necessárias para a aprendizagem da programação, ao tempo dedicado às atividades realizadas com computador…aspetos que, na verdade, não
se distanciam muito das perceções que alguns dos jovens em cursos científico-humanísticos fazem destes cursos.

Como vimos já anteriormente, o gosto explícito por aprender ou aprofundar conhecimentos na área da programação, embora constitua um dos motivos pelos quais muitos destes jovens optam por estes cursos, são também muitos os que reconhecem que não têm bases suficientes para o que lhes é requerido. Foi igualmente referido pelos professores de TIC/Informática que entrevistámos que as dificuldades em módulos/disciplinas de programação em cursos profissionais da área são significativas e recorrentes, devendo-se em boa parte à falta de bases em disciplinas científicas como a matemática, ao limitado desenvolvimento de capacidades cognitivas associadas à lógica e ao insuficiente ensino de disciplinas de TIC, ao longo do percurso escolar dos jovens.

Estes aspectos não apenas condicionam as percepções que os jovens têm relativamente a estes cursos – nalguns casos, “é um pouco diferente do que eu pensava” ou “não é tudo tão fácil como parece” – como também condicionarão certamente o sucesso no seu desempenho, nomeadamente do ponto de vista de conclusão do curso, da possibilidade efetiva e/ou da motivação adicional para prosseguimento de estudos na mesma área.

“Eu acho que são cursos interessantes mas muito complicados” (M, 17 anos, CP Gestão de Equipamentos Informáticos)

“Para mim, eu acho que é um curso que precisa de lógica e de empenho, porque tem certas coisas que a gente precisa de perceber, não é tudo tão fácil como parece” (M, 16 anos, CP Gestão e Programação de Sistemas informáticos)

“É preciso ter boas bases e passar muitas horas ao computador” (M, 15 anos, CP Eletrónica, Automação e Computadores)

“Pelo facto de serem áreas em constante evolução, são cursos que exigem muito trabalho, para além das aulas” (M, 15 anos, CP Eletrónica, Automação e Computadores)

“É um pouco diferente do que eu pensava, é preciso passar muitas horas ao computador, embora eu gosto de computadores, é prático, é preciso gostar-se e é necessário ser-se autónomo” (M, 16 anos, CP Multimédia)

“Ter bases, ser-se razoável em programação, já ter bases, trabalhar para além das aulas, ser-se criativo e estar atualizado” (M, 15 anos, CP Multimédia)

“São cursos muito exigentes e desafiadores e requerem muita dedicação, mas o mais importante é que têm boas saídas profissionais” (Vários alunos, TesP em TICE)

“São uma boa aposta, porque as TICE estão na vanguarda” (M, 17 anos, CP Eletrónica, Automação e Computadores)

“É um curso muito bom porque no final tem-se um emprego quase garantido” (M, 15 anos, CP Eletrónica, Automação e Computadores)

Apesar das dificuldades, estes jovens valorizam aspectos como o caráter prático das aprendizagens, a autonomia e criatividade que podem ter no uso das tecnologias, o facto
de terem de estar “sempre atualizados” e, sobretudo, as saídas profissionais que estes cursos propiciam, um aspeto que, como vimos, é muito relevante na sua escolha.

Sobre a possibilidade de prosseguimento de estudos, entre os jovens que estão no ensino secundário profissional em cursos TICE?

Ainda que a possibilidade de prosseguimento de estudos para o ensino superior exista, grande parte destes jovens prefere claramente a opção de começar a trabalhar. A referências explícitas a prosseguir para o ensino superior são pontuais. A possibilidade de o fazer parece depender da própria inserção profissional que tiverem – se arranjarem facilmente trabalho, numa área que gostam, é menos provável que voltem a estudar. Consideram que essa é uma possibilidade que não está completamente afastada, mas que pode ficar adiada ou que eventualmente possa ser, no futuro, combinada com o trabalho. Referem-se a razões de ordem económica e financeira que podem inviabilizar a continuação dos estudos, ou que suscitam a necessidade de “arranjar emprego” logo a seguir ao curso, mas também às dificuldades de ingresso no ensino superior devido à exigência dos exames de acesso.

“Escolhi o curso pelo gosto e pela grande saída profissional que tem e quando acabar o curso gostava de trabalhar” (M, 15 anos, CP Eletrónica, Automação e Computadores)

“Escolhi um curso profissional porque tem mais saídas e quero fazer o 12º ano e depois ir trabalhar” (F, 17 anos, CP Multimédia)

“O interesse é trabalhar, tem que ser.” (F, 39 anos, CET Automação, Robótica e Controlo Industrial)

“Se tiver oportunidade de continuar a trabalhar depois do estágio, tenho que ponderar se volto para a faculdade” (M, 23 anos, CET Automação, Robótica e Controlo Industrial)

“Não está fora de hipótese continuar a estudar” (M, 19 anos, CET Automação, Robótica e Controlo Industrial)

“Eu penso em tirar boas notas enquanto estou a estudar para depois ter mais facilidade de entrar no mercado de trabalho. Gostaria de ir para a universidade e ser engenheiro informático” (M, 16 anos, CP Gestão de Equipamentos Informáticos)

Os CET e TeSP também como uma alternativa de entrada no ensino superior

Entre os alunos em cursos CET e TeSP entrevistados, as razões da opção por estes cursos em áreas TICE são muito semelhantes: ou por constituíam o percurso natural depois de um curso profissional no secundário na mesma área, ou porque são uma alternativa mais viável de acesso à licenciatura. Quem exprime a intenção de continuar a estudar, seguindo para o ensino superior depois do curso, refere-se às “vantagens competitivas” que um diploma trará, quer nas oportunidades de emprego, quer na qualidade desse emprego e nas perspetivas de progressão na carreira.
“Eu acabei o 12º ano em artes visuais. O meu objetivo era trabalhar depois em comunicação” (M, 21 anos, TeSP Produção de Audiovisual)

“Eu fiz o 12º ano com um curso de dupla certificação, em área de informática. E gostei.” (M, 19 anos, CET Automação, Robótica e Controlo Industrial)

“Eu vim para redes e sistemas informáticos porque já tinha feito o secundário no ensino profissional em informática. Já tinha algumas bases” (F, 18 anos, TeSP Redes e Sistemas informáticos)

“Cheguei a estar no 10º e no 11º ano no ensino normal [em ciências e tecnologias]. Quando cheguei ao 11º ano fiz os exames, até passei, mas disse que não era aquilo. Sempre gostei de engenharia mecânica e pronto...como o curso era um bocadinho de eletrónica e mecânica...e depois quero seguir uma licenciatura em mecânica” (F, 22 anos, TeSP Automação, Robótica e Manutenção Industrial)

“Os cursos TESP foram uma alternativa para o acesso à licenciatura, sem necessidade de realizar as provas de ingresso e tentámos concorrer ao TESP relacionado com uma área afin à do curso profissional anterior “ (Vários alunos, TESP em TICE e em CTEM não-TICE)

“Eu sinto que este curso dá oportunidade de emprego com facilidade, mas para termos aquela carreira mais substancial sinto aquela necessidade de ter o ensino superior. É mais por isso que estou inclinado em voltar à faculdade depois de terminar o estágio.” (M, 23 anos, CET Automação, Robótica e Controlo Industrial)

“Quem tem licenciatura tem sempre mais oportunidades. Pode não ter a experiência à entrada do mercado de trabalho, mas tem um diploma que lhe garante logo à entrada mais oportunidades...e na progressão também” (M, 39 anos, CET Automação, Robótica e Controlo Industrial)

Mas também porque, nalguns casos, terão surgido como uma opção interessante a jovens que, depois de terem frequentado o ensino superior nestas áreas ou de terem tido experiências de trabalho, preferem um curso com uma orientação mais prática ou que lhes permita alargar as perspetivas de desenvolvimento profissional.

“Cheguei a estar em engenharias a estudar na faculdade, mas não acabei o curso. Estava em eletrotecnia. Quis desistir para procurar uma opção melhor. Este CET é diferente mas continua próximo da área das engenharias” (M, 23 anos, CET Automação, Robótica e Controlo Industrial)

“Eu também experimentei estar em engenharia mecânica, também desisti. Era muita teoria, queria uma coisa mais prática. Se soubesse o que sei hoje tinha ido logo para tecnologias. Sempre fui muito interessada em ciências e engenharias, sempre gostei de desmontar coisas” (F, 28 anos, CET Automação, Robótica e Controlo Industrial)

“Eu já tive alguma experiência profissional ao nível do cinema. Já realizei quatro curtas-metrags, levei a festivais algumas” (M, 20 anos, TeSP Produção de Audiovisual)

“Eu já faço fotografia há muitos anos e sinto que o trabalho que tenho feito, só fotografia, não chega. Vim para este curso para ter mais «asas»” (M, 21 anos TeSP Produção de Audiovisual)
“Não arranjei trabalho na minha área. Arranjei noutras áreas que não têm nada a ver com isto. Resolvi apostar novamente numa formação para ver se consigo um emprego mais vocacionado para o que gosto” (M, 30 anos, CET Automação, Robótica e Controlo Industrial)

É uma área de futuro...com empregabilidade

A noção da empregabilidade elevada na área é bem evidente entre os jovens que estão em cursos TICE, mas nem sempre é a razão principal da escolha do curso. De uma forma geral, este argumento não se sobrepõe ao “gosto e interesse pela área” antes o complementa, ou reforça, para aqueles que já estão em cursos TICE. O argumento da empregabilidade na área parece ser preponderante entre os alunos que estão em TICE face aos outros que não estão.

Quase todos os que já estão em cursos TICE, no ensino secundário, pós secundário e superior, gostariam de trabalhar na área, mesmo que isso implique não trabalhar em Portugal. Alguns destes alunos revelam alguma informação sobre a procura elevada de recursos humanos, referindo exemplos concretos de anúncios de emprego, do número de vagas por preencher, nomeadamente por falta de programadores, e casos de amigos ou familiares que tendo esta formação têm sido bem-sucedidos no mercado de trabalho; outros referem-se, de uma forma mais geral, à inevitabilidade e à transversalidade da tecnologia no mundo atual e de futuro “a tecnologia está me todo o lado...é uma área de futuro”.

“Primeiro porque é um curso com muita empregabilidade em Portugal e não só cá, como pela Europa fora. Também é um curso que eu sempre gostei, informática, e também por vários conhecimentos... o meu irmão também andou já andou aqui na universidade [...]. Sempre falei bem do curso, tem emprego sempre garantido – já vai na terceira empresa” (M, 21 anos, CS Informática)

“Comecei a pensar vir para este curso quando vi também vários anúncios no jornal a dizer “precisa-se programador”... e depois lá pensei, onde é que eu poderei aprender esses conhecimentos? Depois falei com a minha mãe e ela disse que se eu fosso para um curso profissional me sairia melhor do que para um curso normal e pronto.” (M, 15 anos, CP Gestão e Programação de Sistemas Informáticos)

“Há poucos programadores e há muitas ofertas de emprego” (F, 16 anos, CP Gestão e Programação de Sistemas Informáticos)

“Até 2020 vai haver falta de cento e tal mil funcionários na informática. Portanto pode não ser em Portugal mas há trabalho. O meu objetivo não é só Portugal. Desde que haja bons salários” (M, 16 anos, CP Gestão e Programação de Sistemas Informáticos)

“Cada vez há mais automação e é tudo mais tecnológico, por isso acho que tem saída” (M, 16 anos, CP Eletrónica e Telecomunicações)

“Eu acho que é uma área importante do futuro. O mundo está mais virado para a tecnologia, mais dependente.” (M, 16 anos, CA Eletrónica, Automação e Comando)
“É uma área que «puxa», é cada vez mais moderna, está a lançar as pessoas para o mundo do trabalho.” (M, 14 anos, CA Eletrónica, Automação e Comando)

Os alunos que estão em cursos na área de Audiovisuais e produção dos média (CNAEF 213) parecem muito mais atraídos pela aplicação e combinação das TIC em áreas para as quais tem um maior interesse - comunicação, publicidade, marketing, fotografia, som, edição de vídeo, desenho, design gráfico, multimédia, cinema, educação, turismo... - referindo-se, em particular, ao potencial e à importância crescente que a aplicação destas tecnologias tem nessas áreas.

“Não sabia que seria este o curso que ia escolher, mas era o mais adequado para mim. Não teve a ver com as especificas do secundário. As médias não eram altas para entrar. A matemática e a física são difíceis, mas tive média para este curso. Não tive TIC no secundário mas gosto bastante de informática. Este curso tem boas saídas profissionais e poderei trabalhar em diferentes áreas. Gostava de seguir publicidade e marketing” (M, 18 anos, CS Comunicação e Multimédia)

“Eu escolhi o curso de Multimédia porque penso que é o que adequa mais a mim a nível das disciplinas que tem e por trabalhar com computadores. Além disso, penso que tem muitas saídas profissionais o que faz com que arranje emprego com mais facilidade” (M, 16 anos, CP Multimédia)

“Eu escolhi este curso porque gostava de prosseguir depois os estudos na área da fotografia e penso que este curso me dê algumas bases também nesta área” (F, 17 anos, CP Multimédia)

“Eu estava em Ciências e Tecnologias e não estava a conseguir ter sucesso nos estudos e gosto muito de desenho. Penso que posso aplicar esses conhecimentos nesta área. Gosto de desenhar e multimédia pode ter a ver com isso, aplicando depois os programas próprios no computador. Depois gostava de continuar os estudos na área do desenho ou multimédia” (F, 17 anos, CP Multimédia)

“Eu queria, em primeiro lugar, o curso de turismo porque gosto muito de inglês. Mas o inglês também é importante em multimédia para saber trabalhar com diversos programas. Mas vim para esta área e estou a gostar. Acho que o curso tem saídas profissionais. Depois do 12º ano quero arranjar emprego” (M, 18 anos, CP Multimédia)

Para os que não estão em cursos TICE, o que os faria mudar de ideias?

Grande parte dos jovens que entrevistámos no ensino secundário profissional, ou já em cursos superiores, em áreas não TICE, reconhece que esta é uma área fundamental e de futuro, mas, por várias razões, não põem a hipótese de poderem vir a seguir uma formação em TICE. Consideram fundamental trabalharem na área que gostam e que escolheram, o que é, aliás, um dos argumentos mais apontados por aqueles que ou já estão em cursos TICE ou gostariam de vir a seguir estudos nesta área.

Outros argumentos surgem pela percepção que fazem destes cursos, embora não tenham tido um contacto direto com eles. Voltam a estar em destaque características menos apelativas, do seu ponto de vista, e por comparação aos cursos em que estão: “muito técnico”, “lida-se pouco com pessoas, mais com máquinas”, “exige muito tempo ao computador”, “são complexos”.

89
“Gosto é de lidar com pessoas mais do que com tecnologia” (F, 17 anos, CP Saúde)

“Não me estou a ver sentado 14 horas ao computador” (F, 17 anos, CP Receção)

“Para quem gostar, eu penso que seja um bom curso e uma boa opção. Para mim, eu acho que é muito técnico e é preciso ter muita paciência, coisa que eu não tenho” (F, 16 anos, CP Saúde)

“Eu acho que são cursos interessantes mas tem que haver muita concentração. Para mim, eu não tenho muita paciência para estar duas, três, quatro horas, agarrada a um computador a fazer trabalhos. Têm trabalhos muito complexos” (F, 16 anos, CP Comércio)

“Tenho amigos que só fazem duas ou três cadeiras por ano. Sei que as engenharias são mais difíceis e são para se ir fazendo. Pensei em fazer um CET em Redes Sociais, mas vi muita programação e «fugi»” (M, 20 anos, CS GRH e Comportamento Organizacional)

Dificuldades e menos gosto por disciplinas de ciências e tecnologias, nomeadamente matemática, são também mencionadas mas a escolha do curso em que estão - ou a não escolha de um curso em TICE - nem sempre é equacionada pela fuga a estas disciplinas. A quase impossibilidade da mudança é mesmo descrita por alguns com muita determinação, por exemplo: “darem-me a licenciatura sem ter que fazer exame a nenhuma disciplina”; “se eu fosse uma excelente aluna e não houvesse cursos na minha área de preferência…”, “uma bomba que abolisse todas as outras áreas”. Outros reconhecem, no entanto, a importância das TIC nas suas áreas de trabalho, como ferramenta, encarando a necessidade de formação contínua nesta área numa perspetiva de desenvolvimento profissional e de mais oportunidades de emprego.

“Gostava de aprender TIC, não de trabalhar. Gostava de aprender porque teria sempre mais opções no mercado de trabalho” (F, 17 anos, CP Receção)

“A mim nada me faria mudar do curso em que estou, mas se algum dia eu precisar mais do que aquilo que sei, aí tirava uma formação (F, 16 anos, CP Receção)

“A motivação para a mudança seria saber que no fim desse curso tivéssemos emprego fixo e ganhássemos bastante dinheiro, mas bastante mesmo. Mas emprego não só é, internacional também “” (M, 17 anos, CP Comércio)

Mas, em geral, a questão da empregabilidade não é sempre convincente. A possibilidade de mudar para ou de vir a seguir, no futuro, um curso em TICE é encarada por alguns como plausível porque se “sentem confortáveis com a tecnologia” ou em disciplinas de base como a matemática ou “pela necessidade de arranjar emprego”. São normalmente os jovens que já estão em cursos das áreas de CTEM que mais encaram esta mudança como plausível. É também para estes que a necessidade de combinar tecnologia/aplicações digitais nas suas áreas de formação e de trabalho é já hoje sentida como uma inevitabilidade ou como uma vantagem competitiva, pelo que põem a hipótese de ter que aprofundar conhecimentos nestes domínios.

E trabalhar em TICE, o que é?
Outra dimensão fundamental desta análise é compreender como os jovens percecionam o trabalho, as profissões e as carreiras em TICE. Estas percepções são naturalmente condicionadas pelo facto de terem maior ou menor vocação para a área, ou de terem já algum tipo de contacto com o estudo e/ou o trabalho nestas áreas. De qualquer modo, é importante percebermos que atributos, mais ou menos apelativos, estes jovens lhes dão, a partir de diferentes perspetivas, sobretudo para que se possam desenhar, do ponto de vista de comunicação e de orientação, estratégias mais esclarecidas e apropriadas.

Importa, para já, salientar que a generalidade dos jovens que entrevistámos, em especial os que estão no ensino secundário geral, têm uma percepção restrita e pouco informada sobre as profissões nestas áreas. A atividade de programação, ou a profissão de programador, é aquela a que normalmente se referem quando se discute este tema. Quanto a outras atividades e profissões, direta ou indiretamente relacionadas com as TICE, as percepções são geralmente difusas e pouco esclarecidas. Outros, pelo contrário, reconhecem a amplitude do trabalho em TICE e as várias profissões que se podem exercer. Estes são normalmente os que já estão em cursos TICE, quer no ensino secundário, quer no pós-secundário, ou aqueles que já tem experiências de trabalho nestas áreas.

A ideia de isolamento e até de “refúgio”

Trabalhar em TICE é “estar isolado” e “passar os dias ao computador”…esta é uma percepção comum entre muitos dos jovens que entrevistámos e geralmente encarada como pouco interessante ou pouco apelativa. Remete para estereótipos de isolamento - estão mais focados na tecnologia do que nas pessoas -, apesar de ligados ao mundo digital, e para atividades de excessiva tecnicidade, que são normalmente difíceis e que exigem concentração. Uma percepção que, como vimos anteriormente, surge também muito associada à forma como jovens adjetivam os cursos nestas áreas.

“Eu imagino um trabalho desses sempre em frente ao computador, uma sala escura, o dia todo” (M, 18 anos, CCH Ciências e Tecnologias)

“Eu imagino uma pessoa mais isolada só ligada a computadores. Eu gosto mais de trabalhos que envolvam pessoas” (F, 17 anos, CCH Ciências e Tecnologias)

“Ampas profissões mais práticas, que envolvem passar os dias sentados a programar, requerem muita concentração” (F, 18 anos, CS Engenharia Informática)

Ainda que esta perspetiva não seja contrariada por outros jovens que ouvimos, ela é curiosamente até encarada de uma forma bem mais atrativa. A ideia que “passar os dias ao computador”, sem ter tanta necessidade de contacto social, é aparentemente, para alguns, “um refúgio” interessante…porque gera menos stress, e porque “sabemos que podemos trabalhar em qualquer lado”, “podemos sempre mudar de emprego facilmente”. São precisamente as características deste trabalho, e as oportunidades de emprego que existem na área, que lhes permite escolher e encontrar “os seus próprios refúgios” onde quer que estejam.

“Eu gosto de resolver problemas, não gosto é de ter de explica-los. É diferente…”
(F, 18 anos, CS Engenharia Informática)
“Nas TICE é mais fácil arranjar emprego e é menos stressante por não se lidar diretamente com as pessoas” (F, 18 anos, CS Informática)

“E até podemos ter um emprego com mau ambiente e podemos sempre estar ali refugiados no computador… E sabemos que se sairmos de lá podemos arranjar facilmente emprego” (M, 17 anos, CS Informática)

Mas é também, cada vez mais, trabalhar em equipa e ser criativo

Para alguns, a ideia de um trabalho isolado e demasiado focado em “resolver problemas técnicos” já está ultrapassada. Referem-se à necessidade de trabalhar em equipas, nomeadamente em equipas multidisciplinares, à abrangência do próprio trabalho e ao crescente recurso à criatividade, aspetos que consideram indispensáveis num sector muito competitivo e em que a inovação “marca a diferença”.

“Eu, por acaso, acho que mesmo essas áreas já nem são assim tão isoladas. É muito mais para além disso…Eu só seguia uma profissão nessa área se envolvesse uma parte criativa (F, 16 anos, CCH Artes Visuais)

“O tempo que o engenheiro estava sozinho já acabou, agora trabalha-se em equipa” (M, 17 anos, Gestão e Programação de Sistemas Informáticos)

“Engenharia informática é bem paga. E imagino-me a trabalhar em equipa porque é uma área extensa, não imagino um departamento inteiro a depender de uma só cabeça. Há um que fica com design, outro com interface, outro com programação, outro com física…Para desenvolver, por exemplo, um software novo são precisas várias pessoas. Cada uma responsável por uma área.” (M, 15 anos, CCH Ciências e Tecnologias)

“É importante ser criativo, porque um bom produto/solução pode vender bem” (M, 16 anos, CP Eletrónica, Automação e Computadores)

“Nesta área é necessário ser dinâmico, procurar coisas, ter criatividade, ser competitivo para marcar a diferença. Temos que mostrar o que somos” (F, 15 anos, CP Multimédia)

Adaptabilidade, multitasking, trabalhar por projetos

Outros valorizam a possibilidade, ou a necessidade, de trabalhar por projetos, o que é encarado como um desafio. O carácter único de cada projeto, a necessidade de adaptação, a possibilidade de realizar tarefas diferentes, o compromisso partilhado e o contributo individual e responsável de cada um, ou a pressão dos prazos e a orientação para o cliente são aspetos que, para estes jovens, caracterizam, de uma forma apelativa e desafiante, o trabalho em TICE.

“Os desafios para realizar os projetos. Cumprir prazos, fazer exercícios de tentativa e erro” (F, 20 anos, TeSP Programação de Sistemas de Informação)

“Esta é uma área em que faz parte não termos horários. Temos projetos diferentes…” (F, 18 anos, TeSP Produção Audiovisual)
“Saber adaptarmo-nos a tudo. Há coisas que podem cair fora da nossa competência. É importante saber fazer um pouco de tudo” (M, 20 anos, TeSP Produção Audiovisual)

“Eu não gosto de estar parada. Eu gosto de me sentir ocupada e fazer muita coisa ao mesmo tempo.” (F, 18 anos, TeSP Redes e Sistemas Informáticos)

“Já estagiei em sítios diferentes e há sempre clientes para reparar coisas [eletrónica]. Temos que ter atenção e responsabilidade no trabalho” (M, 18 anos, TeSP Eletrónica e Redes de Telecomunicações)

“Quem trabalha, por exemplo, numa sala de desenho, temos que ter atenção. Podemos fazer alguns erros que depois não dá para voltar atrás” (F, 18 anos, TeSP Desenvolvimento Web e Multimédia)

“A noção de que a inovação tecnológica é intensa e acelerada, sobretudo no domínio das TICE, é evidente. Por isso, trabalhar nestas áreas obriga a constante atualização. De outra forma, a vantagem competitiva de empresas e profissionais é rapidamente comprometida. Esta perceção é já muito clara entre os jovens que entrevistámos. Encaram a sua própria competitividade no mercado de trabalho em função da sua capacidade de se manterem atualizados e da necessidade de estarem continuamente a aprender.

“Trabalhar em TICE é estar sempre à frente em relação às outras áreas, o que nos obriga a estar sempre a estudar” (Vários alunos, TeSP em TICE)

“Nesta área é importante estar sempre atualizado” (M, 16 anos, CP Eletrónica, Automação e Computadores)

“É preciso ter a noção que não é tirar o curso e parar por aí. Temos que estar em constante aprendizagem porque senão, quando vamos dar conta, estamos completamente desatualizados” (M, 19 anos, CS Engenharia Mecânica)

“Acho que é uma área que está em desenvolvimento, que requer sempre um pouco de formação. Por exemplo, na informática, nós aprendemos só um número de linguagens de programação. Mas se outra área requer outra linguagem, temos que aprender. E todos os dias aparece algo novo” (M, 19 anos, CS Engenharia Informática)

“Eu pretendo continuar os estudos, para a universidade, quando acabar o 12º ano. É uma área em que nós temos que estar constantemente a atualizarmo-nos…” (M, 17 anos, CP Gestão e Programação de Sistemas Informáticos)

A ideia de mobilidade, “trabalhar em várias coisas” e “em qualquer lado”

Este é, talvez, um dos aspetos mais interessantes de trabalhar em TICE, sobretudo no contexto atual do mercado de trabalho. A transversalidade destas tecnologias aos vários sectores de atividade económica e nas suas múltiplas aplicações e o carácter globalizado do mundo e das linguagens digitais constituem, de facto, um potencial de mobilidade
profissional e geográfica imenso e incomparavelmente maior do que o de muitas outras atividades. Esta perceção, de que “se pode fazer muitas coisas” e “em qualquer lado” – “até a partir de casa” – está já bem presente para alguns dos jovens entrevistados, ainda que reconheçam que é uma área muito competitiva.

“O facto de podermos fazer mil uma coisas em mil e uma áreas diferentes. E há sempre mais que podemos fazer. Não é uma preocupação que tenhamos que ter” (F, 18 anos, CS Engenharia Informática)

“Eu acho desafiante porque é um meio onde há muita concorrência e é preciso saber, é preciso ser melhor do que os outros e é preciso fazer alguma coisa que os outros sintam que lhes faz falta” (M, 19 anos, CS Engenharia Mecânica)

“Eu acho que em informática é possível ser muitas coisas e no tempo que hoje conhecemos, ainda mais. Qualquer empresa precisa de informática...para ser bem gerida…” (M, 16 anos, Gestão e Programação de Sistemas Informáticos)

“Penso que vai ser interessante ter esta profissão porque em multimédia existem sempre imensos projetos” (F, 17 anos, CP Multimédia)

“É mais fácil mudar de Engenharia para Gestão do que ao contrário” (Vários alunos, CS em TIC)

“Penso que não será muito dificil encontrar trabalho na área e que se pode trabalhar em rede e a partir de casa” (F, 17 anos, CP Multimédia)

“Depende muito, alguns passam 8 horas num gabinete da empresa. Outros estão em casa a coordenar” (M, 17 anos, CS Engenharia Eletrotécnica e de Computadores)

Num momento em que os jovens se defrontam com grandes dificuldades de inserção no mercado de trabalho, as oportunidades de emprego caracterizadas também por esta abrangência e mobilidade do que é trabalhar em TICE podem ser um importante incentivo para que muitos outros jovens se interessem por estas áreas.

Oportunidades de emprego em TICE e perspetivas de carreira

Como vimos anteriormente, a perceção de que nestas áreas há uma elevada empregabilidade é bastante comum entre os jovens que já estão em cursos TICE. Esta é, aliás, uma das razões frequentemente referida para a escolha destes cursos. Aqui procuramos reforçar, não apenas a perceção de empregabilidade – “é mais fácil arranjar emprego” -, nomeadamente quando comparada com outras áreas, mas também as expetativas de carreira de alguns desses jovens. Imaginam-se a trabalhar especificamente em grandes empresas e em marcas de referência do sector, em Portugal ou fora, e em áreas da sua preferência e formação. Valorizam as perspetivas de carreira, as oportunidades de formação contínua e a atratividade dos salários que poderão ter nessas empresas.

“Nas TICE é mais fácil arranjar emprego” (Vários alunos, CS em TICE)
“Gostava de trabalhar na Sony, integrado numa equipa de programadores de jogos, com um bom salário” (M, 16 anos, CP Eletrónica, Automação e Computadores)

“Gostaria de ter uma carreira que me permitisse ganhar bem e pudesse ser mecânico numa grande marca como a BMW ou a Volkswagen” (M, 17 anos, CP Manutenção Industrial – Mecatrónica Automóvel)

“Quando eu penso no meu futuro, imagino-me numa grande empresa onde se fazem jogos e programas” (M, 16 anos, CP Gestão de Equipamentos Informáticos)

“É importante gostar e ser muito bom em programação. Eu gostava de ser programador numa equipa, de uma grande empresa, de produção de jogos. Claro que gostava de ter um bom salário” (M, 16 anos, CP Eletrónica, Automação e Computadores)

“Salário e trabalhar num sitio que goste. Tem a ver com empresas. Há empresas que eu sempre sonhei, como a Microsoft, mas se, de futuro, por exemplo, fosse para a Siemens, era um bocadinho diferente, mas era um emprego” (M, 16 anos, CP Gestão e Programação de Sistemas Informáticos)

Trabalhar em Portugal ou fora?

São vários os jovens que referem a possibilidade de trabalharem fora do país, por gosto e determinação, ou porque acham que, nas suas áreas de interesse, as perspetivas de trabalho em Portugal serão menores e menos atrativas. Alguns referem-se, em particular, a alguns destinos onde gostariam de vir a trabalhar, nomeadamente, a países de referência, mais desenvolvidos e com mais oportunidades de emprego nas suas áreas de preferência.

“Gostava de trabalhar no estrangeiro, na área de criação de vídeo jogos” (M, 14 anos, CP Eletrónica, Automação e Computadores)

“Eu quero ir para Londres porque sempre gostei muito do Reino Unido e ouvi dizer que as artes têm muita saída lá.” (F, 15 anos, CCH Artes Visuais)

“Gostava de ir para o estrangeiro, América ou Canadá, porque existem mais oportunidades e considero que a área lá está mais desenvolvida. Acho que estão mais desenvolvidos que Portugal. Gostava de trabalhar para a Disney para fazer desenhos animados e em Portugal não há tantas oportunidades para isso. Poderei ter outras experiências se concretizar os meus objetivos” (F, 17 anos, TeSP Desenho Digital 3D)

“É claro que a tecnologia é o futuro, não tenho dúvidas nisso…é basicamente só ter emprego nesta área e provavelmente não vai ser em Portugal. Eu estou a pensar em emigrar” (M, 15 anos, CP Gestão e Programação de Sistemas Informáticos)

Perspetivas de empreendedorismo?

A grande maioria dos jovens entrevistados não parece equacionar, pelo menos, para início de carreira, a possibilidade de criar o seu próprio negócio. Quando essa hipótese lhes é posta, nomeadamente face ao potencial de empreendedorismo tecnológico nestas
áreas, é geralmente considerada como possível e interessante mas remetida para depois de ganhar experiência - “Trabalhar primeiro numa empresa e depois criar a minha”. Noutros casos, ela é encarada com mais determinação, e em áreas concretas de negócio, apesar da idade ainda muito jovem de alguns dos seus protagonistas, como se pode ver nestes testemunhos.

“Eu acho que uma das coisas mais importantes é a liberdade. Eu gostava de ser patrão. Tenho mais liberdade, menos tempo, mas mais liberdade” (M, 15 anos CCH Ciências socioeconómicas)

“Gostava de ter o meu próprio negócio na área de produção de software [jogos] ” (M, 15 anos, CP Eletrónica, Automação e Computadores)

“Gostava de ser empresário nas áreas das novas tecnologias, em comércio eletrónico” (M, 17 anos, CP Eletrónica, Automação e Computadores)

Trabalhar em TICE é bem pago ou não?

Relativamente à forma como os jovens percecionam “o que se ganha”, ou “pode vir a ganhar-se”, trabalhando nesta área, estas revelam que, se por um lado, “se pode ser bem pago”, até por comparação a outras áreas onde as oportunidades de emprego são menores, ou os salários são baixos, por outro lado, têm a noção de que “ganhar bem” dependerá do emprego que conseguirem, da empresa onde trabalharem, ou das perspetivas de carreira que tiverem. Algumas funções serão mais bem pagas do que outras e parece ser evidente também que muitos têm já a noção do ajustamento salarial que ocorreu nos últimos anos no mercado de trabalho português. De uma forma geral, consideram que “lá fora podemos ganhar melhor”. Por outro lado, é interessante notar a valorização que alguns atribuem a outros aspetos, para além do salário, nomeadamente o de conciliação entre família ou vida pessoal e trabalho, ou o de poder trabalhar por conta própria, com mais “liberdade”, ainda que admitindo ganhos menores ou mais instáveis.

“Gostava de continuar a trabalhar nesta área. Penso que tem boas saídas profissionais e trabalhar em TIC é interessante. É um trabalho exigente mas deve compensar e deve ser mais bem pago do que se eu só tivesse o 12º ano sem ser numa área específica” (F, 15 anos, CP Multimédia)

“Pelo que se vê, os que entram no mercado de trabalho, começam pelos 600, 700 euros e depois, ao fim e algum tempo, já passam para os 1000 euros” (CM, 16 naos, CA Eletrónica, Automação e Comando)

“Depende do emprego que se consegue” (M, 17 anos, CP Eletrónica, Automação e Computadores)

“É relativo, a gestão também pode ser bem paga” (M, 16 anos, CP Gestão e Programação de Sistemas Informáticos)

“Eu conheço um caso em que uma pessoa na área de informática ganhava 5000 euros por mês, mas não tinha vida…” (M, 17 anos, CCH Ciências e Tecnologias)
“Eu gostava de trabalhar sozinho, de forma independente, por conta própria. Eu prefiro ganhar menos e poder fazer o que quero… o que gosto [design] é uma parte mais criativa e implica liberdade” (M, 17 anos, CCH Ciências e Tecnologias)

2. Diplomados do ensino superior em cursos de requalificação para TICE

Também a vocação e o gosto pelas TICE, ou uma “paixão antiga pela informática””

É importante salientar que, embora muitos dos formandos entrevistados estivessem desempregados, nem sempre é essa a razão principal que apontam para a frequência destes cursos. O gosto e o interesse pela informática, ou pela programação em particular, frequentemente se sobrepõem à necessidade. Alguns porque já tinham essa vocação, mas não tiveram oportunidade de a seguir, outros porque desenvolveram mais recentemente esse interesse, por pesquisa e aprendizagens individuais ou pelo maior contacto e experimentação desses domínios em ambientes mais formais. Sublinham, de uma forma geral, a componente afetiva – “é preciso gostar” – e a necessidade de explorar, experimentar e aplicar estas áreas, até para que se despertem motivações.

“Desde pequenina que eu gostava de computadores. Quando surgiu a oportunidade de ir para eletrónica, aproveitei” (F, 28 anos, Psicologia do Desporto, CRequalificação)

“Quando se gosta, gosta-se. Antes, quando comecei a trabalhar como webdeveloper, era uma necessidade e depois passou a ser um gosto” (F, 22 anos, Licenciatura em Audiovisual e Multimédia, CRequalificação)

“Tem que se gostar mesmo. Eu às vezes estou aqui a fazer um trabalho e vou para casa a pensar nisto” (M, 27 anos, Licenciatura em Arquitetura, CRequalificação)

“Há uma componente emocional também. Estamos a fazer e a criar alguma coisa. Ficas muito tempo a pensar e a desenvolver numa solução, ficas muito envolvido.” (M, 27 anos, Licenciatura em Matemática Aplicada e Computação, CRequalificação)

“Cheguei a trabalhar na área de gestão, estive dois anos numa empresa agrícola. Mas depois fiquei desempregado e voltei à minha paixão antiga da informática” (M, 26 anos, Licenciatura em Gestão, CRequalificação)

“Como tive programação há 30 anos atrás…quando andava na faculdade - no primeiro ano eles puseram uma cadeira de informática - isso motivou-me também a vir” (F, 57 anos, Licenciatura em Engenharia Eletrotécnica e de Telecomunicações, CRequalificação)

“Eu queria apostar mais ao nível de programação porque é uma área que me tem fascinado neste último ano. Mas não tenho um curso a esse nível ainda…aprendi pegando numas coisas da internet, mas claro, aquilo às vezes não chega e precisamos de outro tipo de explicação” (F, 30 anos, Licenciatura em Design Gráfico, CRequalificação)
Trajetórias de formação e similitude das áreas de origem

A similitude das áreas de educação de origem e das próprias trajetórias de formação suscita, nalguns casos, uma maior motivação para explorarem, agora com mais enfoque, a programação. Normalmente estes formandos têm já algumas bases em programação, proporcionadas por trajetórias de formação ou experiências de trabalho prévias, mas entendem que será importante e oportuno aprofundar esses conhecimentos. Normalmente gostam e sentem necessidade desses conhecimentos. Deste ponto de vista, estes cursos surgem como mais uma oportunidade de formação contínua e intensiva, interessante no contexto em que se encontram.

“Eu na licenciatura estive um ano a experimentar, a trabalhar dentro da minha área, e como tive alguma programação no curso nasceu o gosto... achei a solução ideal [...] A programação que tive estava muito ligada ao áudio” (M, 23 anos, Licenciatura em Tecnologias da Música, CRequalificação).

“Eu antes de entrar na licenciatura de gestão, estive um ano em informática, mas desisti do curso, mas fiquei sempre com pena porque não tinha aprendido a programar” (M, 26 anos, Licenciatura em Gestão, CRequalificação).

“No curso tive uma cadeira de introdução a webdesign, fiquei com umas noções de programação web, mas só isso.” (M, 27 anos, Licenciatura em Design e Artes Gráficos, CRequalificação).

“O meu objetivo, além de retomar alguns conhecimentos de programação que tinha tido na licenciatura, seria mais mexer em hardware. Nós tínhamos bastante informática” (F, 40 anos, Licenciatura em Engenharia Geográfica, CRequalificação).

“Além de ser a minha área de formação, já tive algumas experiências de trabalho, é uma área que eu gosto” (M, 42 anos, Licenciatura em Tecnologias de Gestão, CRequalificação).

Experiências de trabalho na área, ou relacionadas

Alguns dos formandos entrevistados já trabalharam inclusivamente em programação, mas entendem que este tipo de cursos pode proporcionar-lhes uma maior consolidação desses conhecimentos ou uma exploração de novas linguagens de programação. Para aqueles que trabalham em áreas como webdesign, design gráfico ou multimédia, a programação é vista como um complemento cada vez mais necessário, e aparentemente pouco desenvolvido nas suas formações de origem.

“Tenho interesse pela programação, é «ouro sobre azul». É consolidar os conhecimentos que eu já tinha anteriormente como consultor informático” (M, 32 anos, 12º ano e iniciou duas licenciaturas em TIC, CRequalificação).

“Eu já tive contacto com a área da programação. Já trabalhei na área das TI, não era bem nesta linguagem... Já trabalhei como consultor informático. Mas eu considero que não tenho conhecimentos suficientes nesta área” (M, 26 anos, Licenciatura em Engenharia Biomédica, CRequalificação).
“Eu sou webdeveloper, já tenho experiência em programação, e faço mesmo um trabalho de backoffice pós-laboral. Se tiver clientes mais diretos, numa empresa mais pequena, vou precisar de saber estas noções mais básicas” (F, 22 anos, Licenciatura em Audiovisual e Multimédia, CRequalificação)

“Eu gostava de ter as duas coisas, o design aliado à programação, mas neste momento fechei o design e estou a preparar-me para programação” (F, 30 anos, Licenciatura em Design Gráfico, CRequalificação)

Ferramenta de trabalho, complementar às suas áreas de origem, muito diversas

Porém, a grande maioria destes formandos provem de licenciaturas não-TICE e das mais diversas áreas - gestão, educação, psicologia, marketing, artes, música, arquitetura, engenharia civil… Para estes, a oportunidade de frequentarem um curso desta natureza não é tanto encarada como uma requalificação para as áreas das TICE, ou em particular para a programação, mas é sobretudo uma oportunidade de acrescentarem aquela que é a sua formação de base, uma nova ferramenta de trabalho. Uma ferramenta que, na perspetiva destes formandos, pode ser um complemento muito útil para o trabalho nas suas áreas de formação e uma mais-valia importante do ponto de vista da empregabilidade.

“A primeira dificuldade que vi no curso [mestrado em ciências da educação] é que em termos de tecnologias fica um bocadinho aquém. Aqui temos programação, há realmente essa oportunidade. Espero aproveitar esta formação para a produção de conteúdos educativos em termos digitais para serem implementados nas escolas” (F, 26 anos, Licenciatura em Ciências da Educação, CRequalificação).

“Achei importante fazer programação. Hoje em dia, as pessoas lançam as empresas, tudo na web... dá-me ferramentas. É mais uma coisa complementar [à arquitetura]. A programação têm uma parte estética. As artes ligan bem com esta área, porque a programação tem que ser pensada para o utilizador” (F, 30 anos, Licenciatura em Arquitetura, CRequalificação)

“Para mim o marketing hoje em dia é muito digital. E está difícil arranjar trabalho na área de marketing. […] Preciso de competências nesta área. Nunca programei na minha vida” (F, 29 anos, Licenciatura em Marketing, CRequalificação)

“Eu quero aprender a programar como complemento àquilo que quero fazer no futuro, que é engenharia de transportes, que passa muito pela programação e grandes quantidades de dados. É tornar-me mais competitiva” (F, 24 anos, Licenciatura em Engenharia Civil, CRequalificação)

“Na minha área [tecnologias da música] é importante perceber do áudio, da música e programação. Há empresas que desenvolvem aplicações relacionadas com áudio” (M, 23 anos, Licenciatura em Tecnologias da Música, CRequalificação)

“Vejo-me a trabalhar nesta área. Na área de base de dados já senti necessidade. Quase todos os programas de contabilidade e de software de gestão, são fortíssimos…” (M, 39 anos, Licenciatura em Gestão, CRequalificação)

Também algumas influências de proximidade

99
É curioso que mesmo neste segmento de formação contínua de adultos, uns mais jovens do que outros, se notem algumas das influências que outros, normalmente próximos, terão tido na decisão de frequência destes cursos. Como seria de esperar, não são tão notórias e tão mencionadas como as que reportámos para o caso da formação inicial de jovens, mas, ainda assim, vale a pena dar-lhes algum destaque. Amigos que conhecem e sugerem estas formações, ou com os quais pretendem desenvolver projetos, cônjuges com profissões na área da informática e até pais que se mostram relutantes pelo caráter mais profissional destas formações relativamente às que um percurso regular, para o ensino superior, oferece, foram referidos como tendo tido maior ou menor influência na decisão de frequentar o curso.

“O meu marido é engenheiro informático...e comecei a ganhar o gosto. E achei que precisava de desafiar-me, de ver outras coisas, sair da minha zona de conforto” (F, 28 anos, Licenciatura em Biologia, CRequalificação)

“Eu já estava a chatear os meus amigos a dizer que não queria ficar em veterinária e foram eles que me mandaram a informação. Eu vi o que era e gostei” (M, 28 anos, Licenciatura em Medicina Veterinária, CRequalificação)

“A minha mãe é um bocado conservadora, e não tinha uma boa imagem destes cursos mais de cariz profissional. Para ela têm que ser a faculdade, quase todos os dias me pergunta quando é que vou para a faculdade [...]. Nós devíamos ter a possibilidade de falarmos com alguém para conversarmos sobre as áreas que gostamos e saber se há cursos nessas áreas. Eu não senti aconselhamento” (M, 32 anos, 12º ano e iniciou duas licenciaturas em TIC, CRequalificação)

Perceções sobre o curso de requalificação: o desafio da programação

Mais uma vez, a aprendizagem da programação, ainda que em formato de curso intensivo e curto, é encarada como um desafio, e um desafio difícil, sobretudo porque a maioria dos formandos vem de áreas pouco ou nada relacionadas com estes domínios. Mesmo os que têm já algumas bases reconhecem essa dificuldade. A heterogeneidade da composição destes grupos é geralmente considerável, em áreas de formação de origem e experiências de trabalho e até em expetativas e interesses, muito diferenciados. São os próprios formandos que reconhecem que, com “pontos de partida” tão diferentes, os ritmos e a qualidade das aprendizagens são desiguais e certamente que também o uso futuro que delas farão. Neste sentido, processos de seleção para estes cursos mais condicionados, nomeadamente procurando uma maior nivelação de conhecimentos no mesmo grupo ou admitindo a constituição de vários grupos em diferentes níveis de conhecimento, poderia ser solução preferível.

“Eu acho que é preciso ter um gosto por esta área, porque é um pouco difícil a programação. É preciso dedicação” (M, 26 anos, 12º ano e iniciou uma licenciatura em Engenharia Informática, CRequalificação)

“Eu tive essa optativa [ciências informáticas] na minha escola, no secundário, no 11º e 12ºano. Sempre foi uma área onde me senti à vontade. Aquilo quando se aprende a base de uma linguagem, depois é mais simples aprender outras” (M, 26 anos, Licenciatura em Química Aplicada, CRequalificação)
“Essa diferença nas aprendizagens sente-se. Mesmo que não tenha sido um contacto direto (prévio) com a programação, basta que seja de uma área similar” (F, 22 anos, Licenciatura em Audiovisual e Multimédia, CRequalificação)

“Nota-se uma grande diferença entre quem já teve contacto com programação antes. Há uns que já estão nos jogos, outros ainda não” (F, 29 anos, Licenciatura em Marketing, CRequalificação)

“Uma das coisas que me fez continuar no processo de seleção, para além de estar interessada na área, foi que dava para perceber que havia muito trabalho do outro lado. [...] Terem criado um challenge específico, dava para perceber que as pessoas do outro lado também estavam empenhadas” (F, 22 anos, Licenciatura em Audiovisual e Multimédia, CRequalificação)

“O próprio processo de recrutamento foi desafiante. O primeiro contacto com [...] era escrever uma linha de código” (M, 27 anos, Licenciatura em Arquitetura, CRequalificação)

O problema da matemática e da lógica

Mais uma vez, essas dificuldades na programação também se prendem com as próprias dificuldades ou a impreparação na matemática. São vários os formandos que as referem, sobretudo no uso e na aplicação da lógica, reconhecendo que estas são capacidades essenciais na aprendizagem da programação. Remetem para a importância do ensino destes domínios ao longo do percurso escolar prévio, até ao secundário, e para a forma como são ensinados.

“As pessoas infelizmente não gostam de matemática, é uma pena porque é preciso para tudo. E as pessoas associam à programação, é precisa. Uma grande lacuna que eu vejo na educação, pelo menos até ao 12ºano na matemática, é que não há nenhuma parte da matéria ligada à lógica, à álgebra. Só tive mesmo na faculdade, no primeiro ano da faculdade. É uma maneira de ensinar a pensar a lógica. Ajudava bastante a programação...Só se aprende isso na faculdade, é uma lacuna” (M, 26 anos, Mestrado em Engenharia Biomédica, CRequalificação)

“O problema começa mais cedo, tem a ver com a maneira como as se expõe as matemáticas e as físicas no ensino” (M, 22 anos, Licenciatura em Tecnologias da Música, CRequalificação)

“Mas eu acho que não é tanto pelas matérias das matemáticas, é pelo raciocínio lógico, pela elasticidade mental. Há aqui pessoas que têm mais do que eu. Eu sinto que tenho necessidade de praticar mais essa parte” (F, 22 anos, Licenciatura em Audiovisual e Multimédia, CRequalificação)

“Não é a matemática em si que precisamos [em programação], mas é a capacidade lógica, o raciocínio que desenvolve” (M, 27 anos, Licenciatura em Arquitetura, CRequalificação)

Componente prática e intensiva do curso

Encaram, em geral, a oportunidade de fazer este tipo de cursos com interesse, nomeadamente porque são curtos, intensivos, práticos e dão as bases para a iniciação da
programação, embora alguns considerem que “é preciso aprofundar se quisermos trabalhar na área”. Por outro lado, valorizam muito a possibilidade de os fazerem sem terem de os pagar, enquanto iniciativas integradas no âmbito da intervenção do serviço público de emprego, ou outras que, sendo de carácter privado, sejam subsidiadas. De outra forma, muito provavelmente não teriam tido acesso a estas formações que, apesar de cada vez mais estarem disponíveis no mercado, são pagas pelos formandos e a preços elevados.

“O facto de ser um curso conciso, três meses, 8 horas por dia, durante 5 dias…é ótimo para aprender. Para mim esta formação intensiva chega” (M, 26 anos, Licenciatura em Comunicação Multimédia, CRequalificação)

“É pouco tempo, é intensivo, não tinha disponibilidade financeira para fazer outro curso” (M, 23 anos, Licenciatura em Tecnologias da Música, CRequalificação).

“O facto de eu não ter que pagá-lo [o curso]” (F, 29 anos, Licenciatura em Marketing, CRequalificação)

“Normalmente estes cursos são caros, são 3000, 4000 euros. Eu conheço pessoas destas áreas e pagaram isto por estes cursos” (M, 26 anos, Licenciatura em Segurança e Saúde em Trabalho, CRequalificação)

“Fazer um curso destes [programação] seria caro se tentasse de outra forma…E foi uma oportunidade que agarrei” (M, 39 anos, Licenciatura em Gestão, CRequalificação)

Empregabilidade: percepção da procura elevada e da necessidade de multiskilling

Naturalmente que melhorar as perspetivas de empregabilidade, quando em situação de desemprego, é um dos principais objetivos destes formandos e uma das principais razões da frequência destes cursos. Muitos tiveram conhecimento destas formações pelo IEFP, pelos centros de emprego onde se encontram registados, outros candidataram-se a ofertas disponíveis no mercado, algumas pagas integralmente pelos formandos, outras financiadas ou cofinanciadas por fundos públicos.

A noção de que as perspetivas de emprego são boas nestas áreas e de que há uma elevada procura de programadores é geralmente comum entre os formandos. Mas esta noção não se limita aos programadores, até porque alguns não irão trabalhar diretamente ou exclusivamente com programação. Ela alarga-se à ideia de que o mercado, mesmo noutras áreas de trabalho, requer cada vez mais competências neste domínio, de uma forma complementar aquelas que são as suas competências de origem. Esta necessidade de *multiskilling*, em que o domínio de algumas tecnologias digitais ou de competências básicas de programação é valorizado pelos empregadores, é cada vez mais percecionado pelos formandos. Estes cursos surgem-lhes assim, também deste ponto de vista, como uma oportunidade para se tornarem mais competitivos nas suas áreas de trabalho, algumas já muito saturadas.

“Tem muito a ver com as necessidades e irmos ao encontro delas. Eu trabalhei uma empresa de formação profissional onde abordávamos todas estas questões e tinha reparado que o mercado de trabalho de facto precisa de pessoas nesta área” (F, 27 anos, Licenciatura em Ciências da Educação, CRequalificação)
“Sei que há uma grande procura nas tecnologias da informação… li bastantes notícias relacionadas com tecnologias da informação e já tive experiência profissional nesta área” (M, 32 anos, 12º ano e iniciou duas licenciaturas em TIC, CRequalificação)

“Eu já tinha sentido essa necessidade, mesmo em entrevistas… Já me tinham dito que eu deveria obter algum tipo de formação, por exemplo, em webdesign… Nas ofertas de emprego valoriza-se muito a oferta digital” (F, 24 anos, Licenciatura em Design, CRequalificação)

“Dentro da minha área é difícil ter emprego [vídeo] é mal remunerado, é preciso gastar muito em material. Este curso gera uma profissão com procura. Cada vez mais a programação é utilizada em quase tudo, nós andamos com programação no bolso” (F, 22 anos, Licenciatura em Audiovisual e Multimédia, CRequalificação)

“Este curso consegue-nos relançar para o mercado de trabalho, porque no meu caso a licenciatura [Comunicação Multimédia] era abrangente, e fico como uma especialização” (M, 26 anos, Licenciatura em Comunicação Multimédia, CRequalificação)

“Já trabalhei na minha área [Design de Artes Gráficas], fiquei desempregado, a área está muito saturada. Muito do trabalho que há é especulativo… Achei que este curso era uma boa oportunidade” (M, 27 anos, Licenciatura em Design e Artes Gráficas, CRequalificação)

Inclusive para desenvolvimento de projetos de empreendedorismo

É também desta forma que alguns encaram inclusivamente a hipótese de desenvolvimento dos seus próprios projetos de empreendedorismo. Com os conhecimentos de programação que pretendem adquirir, aliados as suas áreas de formação, trabalho ou de interesse, esperam vir a estar mais preparados para desenvolver e concretizar ideias de negócios, de novos serviços ou de novas soluções tecnológicas que já têm. Consideram que este é um cruzamento necessário para a competitividade desses projetos.

“Eu sempre trabalhei em parceria com a programação, a desenvolver sites… neste momento optei por um projeto próprio, estou a tentar desenvolver-lo” (M, 32 anos, Licenciatura em Design Gráfico, CRequalificação)

“Estou a desenvolver conteúdos infantis, entre outras coisas, mas essa é a mais importante. Gostava de ter uma vertente interativa porque, nos dias que correm, mesmo os canais de televisão que compram conteúdo visual, não compram sem ser interativo, porque esse é o futuro da aprendizagem. Resolvi vir para aqui para aprofundar esses conhecimentos e desenvolver os meus protótipos” (F, 39 anos, Licenciatura em Psicologia Social, CRequalificação)

“O desporto também usa muita tecnologia, mais para a componente analítica. Se eu usar isso para um projeto particular, a nível de uma empresa de material de desporto, posso unir as duas coisas. Posso poupar algum dinheiro com a criação e gestão de um site, arranjar uma solução ao nível do desporto” (M, 39 anos, Licenciatura em Gestão, CRequalificação)
“Eu tenho um amigo que está empregado e quer avançar com uma empresa, perguntou-me se eu queria fazer este curso. Foi ele que me falou. Ele disse que queria desenvolver um software de gestão de edifícios” (F, 24 anos, Licenciatura em Engenharia Civil, CRequalificação)

E o trabalho em TICE?

As percepções sobre o trabalho em TICE, em particular na programação, não se distanciam muito daquelas que temos até agora encontrado entre os jovens. A ideia do programador, como um “trabalhador solitário”, “agarrado ao computador” e “com um aspeto muito _nerd_” ainda surge, mas também se contrapõe com uma visão mais ampla e apelativa de que “agora, já não é assim”, “trabalha-se em equipas” e em “cultura de _open source_”. Por outro lado, valoriza-se o facto de “se poder trabalhar em qualquer lado e a partir de qualquer lado”, o que é, aliás, sublinhado por um dos formandos, como um dos aspetos mais interessantes do ponto de vista da inclusão de pessoas com mobilidade reduzida poderem trabalhar a partir de casa. Já relativamente à percepção sobre os salários que se pagam aos programadores, as percepções dividem-se entre, “nalgumas atividades, são bem pagos” ou, pelo contrário, “trabalham muito e recebem pouco”, embora também se refira a mobilidade considerável destes trabalhadores, em Portugal e no estrangeiro, onde as perspetivas de carreira e de ganhos são mais atrativas.

“Os nossos pais, quando começaram a aprender a programação, era só uma pessoa. Não havia departamentos. Essa pessoa era única. Hoje em dia já não é assim. A área de programação tem cultura de _open source_ — pessoas que trabalham em projetos participados por muita gente. Sãos sempre equipas, hoje em dia, a pensar e a desenvolver” (F, 22 anos, Licenciatura em Audiovisual e Multimédia, CRequalificação)

“O ideal era trabalhar em casa. O facto de se poder trabalhar em qualquer lado é muito bom” (M, 26 anos, 12° ano e iniciou Licenciatura em Engenharia Informática, CRequalificação)

“A flexibilidade também é importante e o poder trabalhar em casa. Eu tive um problema de saúde que me fez repensar a minha profissão também. Estas áreas são mais inclusivas, pessoas com menos mobilidade podem continuar a trabalhar, a fazer coisas interessantes” (F, 28 anos, Licenciatura em Design de Equipamentos, CRequalificação)

“Eu que já tenho experiência nesta área e sei que não podemos fazer as coisas à nossa maneira [...]. Às vezes podemos achar que é melhor de uma determinada forma, mas o cliente quer de outra forma” (F, 24 anos, Licenciatura em Design, CRequalificação)

“Se irei exercer isto [programador] profissionalmente, não, não me estou a ver fechado com um computador à frente [...] não me vejo fechado com vários computadores, com um espeto muito _nerd_ [...] não me vejo a falar com uma máquina” (F, 36 anos, Licenciatura em Gestão, CRequalificação)

“Sobre a área da programação, a profissional, eu tenho ouvido muita reclamação. Que os programadores trabalham muito, e recebem pouco. Se vão lá para fora, ganham dez vezes mais. É desmotivante também” (M, 22 anos, Licenciatura em Tecnologias da Música, CRequalificação)
Uma oportunidade de desenvolvimento pessoal

Outros formandos referem-se à possibilidade que este curso lhes oferece também do ponto de vista de desenvolvimento pessoal. Alargam os seus conhecimentos, atualizam e desenvolvem as suas competências, quando já têm algumas bases em programação, e acham que, independentemente das suas perspetivas de emprego ou de uma futura utilização ou não desses conhecimentos no mercado de trabalho, a oportunidade de fazerem este curso lhes proporciona também uma experiência de aprendizagem contínua interessante, sobretudo num momento em que estão desempregados.

“Mas é uma área gira e gostava de ter alguma mais-valia. Foi uma oportunidade que apareceu. Entre estar em casa e ter esta oportunidade de atualização…” (F, 57 anos, Licenciatura em Engenharia Eletrotécnica e de Telecomunicações, CRequalificação)

“Era uma área que eu não tinha qualquer tipo de conhecimento e achei que não perdia nada por aprender, não foi por oportunidades de emprego, foi mesmo porque era uma coisa que não sabia de todo. Achei que nos tempos que correm, é uma mais-valia. Eu em Gestão tive informática, mas era mais folhas de cálculo” (F, 27 anos, Licenciatura em Gestão, CRequalificação)

“Este curso de programação é uma mais-valia, mesmo ao nível de projetos pessoais, mesmo em casa. Podemos até nem trabalhar nisto, mas podemos fazer um programa que sempre quisemos fazer, para organizar a nossa coleção de receitas, de filmes, ou de moedas…” (M, 26 anos, 12º ano e iniciou uma licenciatura em Engenharia Informática)

Os que não se imaginam a fazer isto...

Há também aqueles que dificilmente se imaginam a fazer da programação o seu trabalho principal. Reconhecem que são competências importantes, mas sempre na perspetiva de complemento às suas áreas de origem. No entanto, parecem-lhes exigir um tal afastamento daquilo que gostam, do que aprenderam e do que gostariam de continuar a fazer, na linha das suas formações de origem, que não concebem a possibilidade de se dedicarem à programação como atividade profissional.

“Não é o meu meio, não consigo criar empatia com aquilo…posso usar pessoalmente, mas não me vejo a trabalhar nisto profissionalmente. É menos intuitivo para mim” (M, 27 anos, Licenciatura em Belas Artes, CRequalificação)

“No mundo das áreas sociais e das artes está-se habituado a um pensamento mais conceptual, livre, mais abstrato. Aqui há certas regras. Nas outras áreas também há regras técnicas, mas aqui é diferente, é mais segmentado” (F, 28 anos, Licenciatura em Comunicação e Cultura, CRequalificação)

“Não me imagino a fazer isto todos os dias, 10 horas por dia a fazer isto. Imaginava-me, por exemplo, umas 5 horas por dia…Mas todos os dias só isto, não. Até porque fogo muito daquilo que realmente gostamos [as áreas de origem] ” (F, 27 anos, Licenciatura em Ciências da Educação, CRequalificação)
“Acho importante ter algumas noções de programação, de websites, porque hoje em dia tudo anda a girar em torno dessa área. O conhecimento nunca fez mal a ninguém. Se irei exercer isto profissionalmente? Não” (M, 39 anos, Licenciatura em Gestão, CRequalificação)

“Ainda estamos a ver. Nós formamo-nos numa determinada área, porque pensámos que seríamos fortes nessa área, ou porque já trabalhámos nela. Portanto, se surgir [novamente] uma oportunidade na nossa área…” (M, 26 anos, Licenciatura em Segurança e Saúde no Trabalho, CRequalificação)

Muito provavelmente é de admitir que muitos dos formandos de cursos de requalificação em TICE não virão a ser futuros trabalhadores do sector mas sobretudo profissionais que, nas suas áreas de trabalho, poderão estar mais bem apetrechados no uso e na exploração destas tecnologias. Ainda assim, tanto esta perspetiva como a de que o sector das TICE poderá vir a explorar uma multidisciplinaridade com áreas não-TICE ou relacionadas, interessante do ponto de vista de inovação tecnológica e de desenvolvimento de novos serviços, não devem ser desvalorizadas.

3. Segregação e estereótipos de género nas TICE

A reduzida presença de mulheres em cursos e em profissões TICE tem sido motivo de grande debate académico e de forte atenção política, nomeadamente a nível europeu. São já várias as iniciativas, europeias e nacionais, dirigidas ao aumento da participação das mulheres no sector das TICE, não apenas motivadas pela garantia da igualdade de género no acesso a estes empregos, como também pela perspetiva de vir a dispor de mais capital humano, traduzido numa mais ampla, diversa e qualificada base de recrutamento. Com efeito, as mulheres estão já muito mais representadas do que os homens na participação e nos diplomados do ensino superior, mas em áreas de educação e formação não-TICE, e em algumas das ciências que compõem as formações em CTEM.

Uma boa parte do debate académico nesta área procura, sobretudo, compreender os fatores que, ao longo do percurso escolar e em fases decisivas de escolhas, dissuadem, em particular, às raparigas de estudar e trabalhar em TICE. Muitos são naturalmente comuns a ambos os géneros e, desse ponto de vista, devem ser equacionados sem distinção, mas como globalmente inibidores do aumento da procura dos jovens por estas áreas. Foi o que até agora, ao longo da análise, procurámos discutir. Outros, pelo contrário, são mais específicos às questões de género, e bastante mais revelantes quando se equaciona a escolha – ou a não escolha – das raparigas por percursos de educação e formação, ou de futuro trabalho, em TICE. Estes merecem que lhes dediquemos agora uma atenção especial. Importa destacar o que, na perspetiva dos jovens que ouvimos - rapazes e raparigas - justifica este enviesamento de género que caracteriza o sector e como eles próprios protagonizam, interpretam ou desmontam estereótipos de género associados às escolhas das áreas das TICE.

A sociedade e a educação de género
São relativamente comuns, expressões como estas – “os rapazes gostam mais do que as raparigas destas áreas, de tudo o que é tecnológico” – muitas vezes, entendidas como “naturais”, mas também já amplamente reconhecidas, entre os jovens, como sendo um “preconceito” ou um “estereótipo” socialmente construído.

“Penso que é a sociedade… as raparigas escolhem outras áreas (M, 19 anos, CCH Línguas e Humanidades)

“Há um estereótipo, de que elas não conseguem mexer bem com máquinas. Nós já temos esse interesse desde pequenos (M, 17 anos, CCH Ciências e Tecnologias)

“Desde pequenas pensam que é uma área para rapazes.” (F, 15 anos, CCH Ciências Socioeconómicas)

“Acho que é um preconceito. É a mesma coisa que um rapaz ir para moda” (F, 16 anos, CCH Ciências e Tecnologias)

“A sociedade potencia isso. No meu círculo de amigas, foi tudo para a saúde.” (M, 27 anos, CS Eletrotecnia e Computadores)

“É a sociedade que lhes diz para se focarem em determinadas coisas. São cativadas a desistir de outras áreas” (M, 28 anos, CS Eletrotecnia e Computadores)

“Começam logo de pequeninas. As miúdas é só barbies, e os rapazes é só carrinhos. Eu tive coleções de carros…Tive as minhas bonecas mas também gostava de carros e motas. O meu pai sempre teve motas, nunca fui de fazer atividades só de meninas” (F, 28 anos, CET Automação, Robótica e Controlo Industrial)

“Eu fui para uma área de saúde, mas quando eu queria vir para estas áreas, a oportunidade foi-me cortada. Disseram-me que isto não é para meninas. Eu acho que se pode começar logo no pré-escolar a incentivar que não há profissões só viradas para as mulheres, ou só viradas para os homens (...).As famílias têm que ouvir os filhos” (F, 39 anos, CET Automação, Robótica e Controlo Industrial)

A influência que atribuem à sociedade, à educação que vivenciam desde pequenos, em contexto familiar e na escola, ainda diferenciada por género, e à forma como se constroem expetativas e se condicionam percepções e escolhas, umas socialmente mais aceites do que outras para raparigas ou para rapazes, indiciam que sendo estes jovens também eles próprios objeto e protagonistas desses preconceitos e estereótipos, cada vez mais se questionam e se distanciam do seu sentido.

Preferência por outras áreas e orientação para o prosseguimento de estudos superiores

O desempenho educativo das raparigas é já hoje superior aos dos rapazes. Têm normalmente percursos escolares mais longos, um significativo sucesso em disciplinas científicas de base, nomeadamente nas áreas de CTEM, estão mais representadas no ensino superior, quer no número de inscritos, quer no de diplomados. Contudo, a sua distribuição pelas áreas de educação e formação é muito diferenciada das dos homens. Estão majoritariamente nas áreas da educação e da saúde, assumem já uma proporção elevada em algumas das ciências que compõem as formações em CTEM, mas a
participação em áreas de educação e formação em TICE não chega aos 20%. Com efeito, o que parece ser evidente é que a não escolha de formações em TICE pelas raparigas não é um problema de sucesso educativo, mas prende-se sobretudo com preferências por outras áreas. Este é, aliás, um dos argumentos que professores e psicólogos também referiram.

“Há o estereótipo que as raparigas são mais inteligentes e com melhores médias. Elas não gostam de mexer nestas coisas. Elas gostam mais de estudar.” (M, 20 anos, CA Eletrónica, Automação e Comando)

“As raparigas normalmente querem prosseguir os estudos e nos cursos técnico, como é para aprenderem uma profissão…” (Professor de TIC/ Informática)

“As raparigas fogem muito destas áreas, é um facto. Nas questões de género ainda temos muito a fazer em termos de políticas e ciências da educação. As normas e os testes que fazemos estão separadas por género” (Psicóloga SPO)

Por outro lado, como a possibilidade de escolher cursos em TICE, no ensino secundário, é sobretudo oferecida pela via profissionalizante, mais orientada para o trabalho, do que para o prosseguimento de estudos, isso parece condicionar fortemente as escolhas das raparigas, que encontram no ensino secundário geral um percurso mais adequado e mais amplo para as suas motivações.

Interesses diferentes em TICE?

De qualquer das formas, algumas das áreas consideradas em TICE, já anteriormente cobertas pelo estudo do mapeamento da oferta de educação e formação e aí classificadas no grupo a que chamámos de TICE Alargado, não apresentam uma desproporção tão notória da participação de mulheres. Entre essas áreas, destaca-se a de “Audiovisuais e produção dos media” (CNAEF 213), aqui integrada neste estudo, também pela expressão significativa do número de alunos matriculados e da dinâmica que crescimento que têm evidenciado nos últimos anos.

De facto, os testemunhos dos jovens que entrevistámos, neste caso, mais raparigas do que rapazes, apontam para um interesse particular das raparigas pela escolha destes cursos, face nomeadamente aos das ciências informáticas e das engenharias em eletrónica e automação ou em eletricidade e energia. Também alguns professores de TIC/ Informática que ouvimos sublinharam esta preferência.

“Penso que na multimédia e no audiovisual não está muito desfasado [o género] ” (F, 19 anos, TeSP Produção de Audiovisual)

“No secundário, o nosso curso de multimédia e de animação eram só mulheres…” (F, 19 anos, TeSP Produção de Audiovisual)

“As mulheres têm bom gosto para estas coisas. Têm gosto e criatividade…” (F, 18 anos, TeSP Produção de Audiovisual)

“A parte da multimédia elas gostam. Quando entra a programação, sistemas digitais, eletrónica é que …se for tratamento de imagem, vídeo, uma parte mais criativa, elas gostam” (Professores)
“E nós focamo-nos muito numa tarefa. Normalmente os rapazes que codificam e programam focam-se bem numa só tarefa. Elas são mais multitasking” (M, 18 anos, CCH Artes Visuais)

“Eu acho que tem a ver com o facto de nós mulheres estarmos muito ligadas à parte do utilizador e de não tentarmos perceber o que está por trás, como funciona [...]. Não somos tão curiosas nesse sentido” (F, 28 anos, Licenciatura em Comunicação e Cultura, CRequalificação)

Mais do que uma preferência, estes dados podem, de facto, indicar o potencial de competências e capacidades distintas e complementares que as mulheres podem trazer ao sector. Normalmente mais interessadas em atividades que requerem criatividade e sentido estético, e mais atentas às expectativas e motivações do ponto de vista do utilizador, podem contribuir para o desenvolvimento de novas soluções e novos serviços em domínios diversos, como as artes, a cultura, a multimédia, a animação, o cinema, a fotografia… e cada vez mais cruzados com as tecnologias digitais e as redes sociais.

Gaming e redes sociais

Também as práticas de utilização das TIC, em contextos informais, parecem ser motivo, pelo menos do ponto de vista dos jovens, para que as raparigas escolhem menos aquilo a que podermos chamar das “hard TICE” e mais as aplicações das tecnologias digitais aos seus próprios interesses pessoais. Embora, como vimos, o quotidiano intensamente digital dos jovens não seja substancialmente diferente entre géneros, a utilização que rapazes e raparigas fazem dessas tecnologias parece ser distinta. Por exemplo, a referência ao facto de os rapazes gostaram mais de gaming em ambientes tecnológicos e digitais e fizerem-no de forma intensiva, desde pequenos, mais do que as raparigas, que parecem preferir a utilização das TIC e das redes sociais para práticas de comunicação e socialização, é um dos argumentos que justifica o maior interesse dos rapazes pela opção de cursos em TICE.

“Eu acho que os rapazes são mais ligados, viciam-se mais rapidamente em jogo. Nós somos mais sociais, procuramos outras coisas” (F, 17 anos, CCH Ciências e Tecnologias)

“As raparigas estão mais nas redes sociais mas jogam menos…” (M, 15 anos, CCH Ciências e Tecnologias)

“Eu tinha 7 anos e já tinha recebido uma playstation e a minha irmã só tinha, no máximo, um MP3…” (M, 17 anos, CCH Ciências Socioeconómicas)

“Os rapazes jogam mais. É normal que estejam mais treinados” (F, 17 anos, CCH Ciências e Tecnologias)

“Os meus amigos que foram para as engenharias informáticas eram gamers. Jogavam e tomaram contacto mais cedo com o computador” (F, 27 anos, Licenciatura em Arquitetura, CRequalificação)

“As empresas de videogame focam-se mais nos rapazes. Repare que se for a ver a quantidade de jogos disponíveis… são jogos que estabelecem a ponte para se
começar, para entrar no mundo da informática” (M, 15 anos, CCH Ciências e Tecnologias)

Ser rapaz, ou rapaz, não interessa...quando se gosta disto, gosta-se!

É também muito interessante perceber como as raparigas que estão em cursos TICE percecionam a opção que fizeram e como a justificam, mesmo contrariando as expectativas dos seus pares, ou daqueles que lhes são próximos. Remetem, mais uma vez, para a vocação que também sentem pelas tecnologias, desde pequenas, para o facto de serem poucas entre muitos homens, e de serem vistas habitualmente pelos seus colegas como “menos boas” naquilo que lhes é exigido, e de por isso terem de se afirmar. São determinadas em afirmar que estes estereótipos têm que mudar – “quando se gosta disto, gosta-se” e são tão capazes ou melhores do que os homens nestas áreas. Deste ponto de vista, são exemplos interessantes que podem servir também de incentivo a que mais raparigas não venham a desistir destas áreas, por razões que nada têm a ver com as suas vocações ou interesses.

“Eu sempre tive este gosto por esta área. Desde pequenina tinha barbies, e essas coisas...mas já dizia que gostava de outras coisas, carros, etc.” (F, 22 anos, TeSP Automação, Robótica e Manutenção Industrial)

“Para amigas minhas a área da informática é uma área muito estranha, dizem logo que não gostam” (F, 18 anos, TeSP Redes e Sistemas Informáticos)

“Vim pelo gosto pela Matemática e Programação. Foi um primo e um professor que me meteram o bichinho da informática. Só há homens e já vi colegas a pensar que isto é só fazer e desenhar jogos. Só gostar não chega, vamos apanhar disciplinas que não conhecemos” (F, 18 anos, CS Engenharia Informática)

“O que sinto é que os rapazes quando vêem uma rapariga nestes cursos dizem logo «ok, esta é rapariga, não vai ser tão boa». Por isso a estratégia é ter boas notas e destacar pela positiva...Eu no meu caso [mecânica] reparei muito isso.” (F, 22 anos, TeSP Automação, Robótica e Manutenção Industrial)

“A ideia de que estes cursos são só para rapazes está a mudar. Eu mudei. Entrei sozinha para uma turma só de rapazes” (F, 16 anos, CP Gestão e Programação de Sistemas Informáticos)

“As raparigas não sabem o que é a programação ou outras áreas das tecnologias. Eu conheço uma rapariga que assim que começou a ter contacto com programação, adorou...mas ela não fazia ideia” (F, 17 anos, CCH Ciências e Tecnologias)

Estereótipos de género em TICE e efeitos dissuasores

De facto, esses estereótipos de género em TICE podem ter um efeito de segregação significativo, não apenas ao longo do percurso escolar como também no trabalho e na progressão de carreira. São, aliás, vários os estudos que o indicam. Alguns alunos e professores entrevistados mencionam precisamente que o facto de algumas raparigas não escolherem estas áreas se deve, em parte, à sua forte associação masculina – “sentem-se deslocadas”, pouco compreendidas ou apoiadas por colegas e professores
nas suas opções, e mais facilmente desistem, ou se desviam desses percursos. A segregação de gênero é também relatada por alguns dos alunos entrevistados, já com experiência de trabalho, relativamente aos próprios contextos profissionais.

“Eu conheço uma rapariga que está a tirar um curso de engenharia de som e são os próprios professores que acham estranho que ela esteja na aula” (F, 17 anos, CCH Línguas e Humanidades)

“O ano passado tive uma rapariga que quis ir para eletrotecnia. Ela esteve lá uma semana, sentiu-se mal porque eram só rapazes. E desistiu” (Professor)

“Elas sentem-se um bocado deslocadas nessas áreas. A escola deve apoiar ao máximo se as raparigas querem ir para essas áreas, para não se sentirem sozinhas e seguirem o seu caminho” (M, 16 anos, CCH Línguas e Humanidades)

“Eu sinto, por exemplo, nas empresas onde trabalhei, não existia sequer a probabilidade de ser uma mulher a desempenhar o papel de um engenheiro informático. Seleccionávamos “um” e não “uma” […] Acredito que até haja muitas mulheres com aptidão e vocação para…mas que se desviem desse caminho” (F, 27 anos, Licenciatura em Ciências da Educação, CRequalificação)

“Eu acho que a grande desvantagem que há é o facto de não poder trabalhar com mais mulheres porque, primeiro, as mulheres são muito mais criativas e, depois, porque as mulheres são mulheres! Esta é uma área onde há muitos homens” (F, 18 anos, CS Engenharia Informática)

“Acho que são áreas muito associadas aos rapazes. Eu só trabalharia nessa área se fosse muito bem pago” (F, 15 anos, CCH Ciências Socioeconómicas)
V. Boas práticas e experiências de sucesso na área das TICE: mobilização, sensibilização e formação

Neste capítulo, focamo-nos em iniciativas que têm sido boas práticas e experiências de sucesso na área das TICE, nacionais e internacionais, por via da iniciativa privada, pública ou do terceiro sector. Como fontes de informação, recorremos essencialmente a relatórios de instituições educativas portuguesas recolhidos no âmbito do trabalho de campo deste estudo (fontes primárias) e a relatórios e outras informações obtidas por diversas vias (fontes secundárias).

O enfoque fundamental é nos modos como as instituições de ensino e de formação têm desenvolvido iniciativas para captar e formar jovens nestas áreas e nas estratégias que têm sido desenvolvidas ao nível da comunicação, sensibilização e orientação para carreiras formativas e profissionais nas áreas das TICE.

As dimensões sobre as quais elencámos o conjunto das experiências têm uma particular atenção sobre os jovens e as suas escolhas, sobre a mobilização das raparigas e mulheres para estas áreas e sobre a requalificação de jovens e adultos desempregados. Estas dimensões têm correspondência com três segmentos de população específicos e representam desafios para a agenda da formação e educação em competências nas áreas das TICE.

No primeiro ponto, fazemos uma seleção de práticas/experiências internacionais reportadas, na sua maioria, num relatório recente da Comissão Europeia e da Empirica (2014), de acordo com os projetos mais recentes e que mais contribuem para os segmentos dos jovens, das raparigas/mulheres e da população desempregada. No segundo ponto, selecionamos e descrevemos casos de boas práticas/experiências nacionais.

1. Panorama europeu: iniciativas em curso e seleção de boas práticas

A partir da análise das iniciativas em curso na Europa, é possível perceber quais são os países que atualmente desenvolvem iniciativas de destaque na área das TICE. Com base no relatório para a Comissão Europeia (EC, 2014b: 159-170), elaboramos o Gráfico 17 para quantificar a distribuição de todas as iniciativas pelos vários países da Europa. Segundo a metodologia adotada nesse relatório, o critério fundamental de seleção foi a abrangência sectorial das parcerias envolvidas em cada iniciativa (MSP – Multi-Stakeholder Partnerships). Os dados mostram que a Alemanha destaca-se claramente como o país protagonista deste tipo de iniciativas. Paralelamente, na Europa da leste, a Estónia apresenta uma posição destacada.
No Quadro 7, apresentamos uma seleção do conjunto destas iniciativas, onde foram extraídas apenas as que estão em curso (sem data de término) ou que estão previstas terminar no ano corrente (2015). A primeira constatação que se deve fazer é que uma boa prática é o envolvimento de vários parceiros: governo, iniciativa privada, sindicatos, organizações não-governamentais e agentes educativos. A segunda constatação é que todas estas iniciativas são fortemente focadas na profissionalização das pessoas para estas áreas das ICT (ou TIC). No seu conjunto há seis iniciativas que já têm alguma maturidade, por estarem há 10 ou mais anos em prática: FIT-IT Programme (Áustria, 2003); Formatic (Bélgica, 2005); Fast Track to IT (Irlanda, 1999); Internet Segura (Portugal, 2005); e-Skills (Reino Unido, 2003); e ITMB degree (Reino Unido, 2005).
<table>
<thead>
<tr>
<th>Países</th>
<th>Iniciativa</th>
<th>Início</th>
<th>Parceiros</th>
<th>Enfoque</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Frauen in die Technik(FIT)/Women into Technology</td>
<td>2006</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FIT-IT programme</td>
<td>2003</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IT-Offensive 2020</td>
<td>2009</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sparkling Science</td>
<td>2007/2017</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>EVOLIRIS</td>
<td>2009</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FORMATIC (Wallonie)</td>
<td>2005</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>CY</td>
<td>Cyprus School Net</td>
<td>2009</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Skilled Workers Offensive/STEM</td>
<td>2012</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Campus</td>
<td>2011</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Girls'Day</td>
<td>2001</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Academy Cube</td>
<td>2012</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>'Cisco meets APO’</td>
<td>2008</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘IT50plus’</td>
<td>2008</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Finish IT</td>
<td>2011</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software-Cluster</td>
<td>2013</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smart Business IT</td>
<td>n.d.</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooperação entre GI e eco</td>
<td>2013</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"IT for Work”</td>
<td>n.d.</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GoMINT!</td>
<td>2008</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STEM Initiative – MINT</td>
<td>2008</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Future People</td>
<td>2006</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>ICT Programme</td>
<td>2011/2015</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IT Academy Programme</td>
<td>2012/2015</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>EL</td>
<td>Formação especializada para profissionais ICT</td>
<td>n.d.</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GetBusy.gr</td>
<td>2012</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>ES</td>
<td>“Soy mayor y me gusta navegar”</td>
<td>2011</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CENATIC – Formação com software de livre acesso</td>
<td>2010</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plan Avanza 2 National Plan</td>
<td>2011/2015</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>FI</td>
<td>Vários exames para diferentes grupos (ICTskills)</td>
<td>2005</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INFORTE</td>
<td>2012</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rails Girls</td>
<td>2010</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOKIA Bridge Program</td>
<td>2011</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>FR</td>
<td>C2r+certificate</td>
<td>2006</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Portal: Internety</td>
<td>2009</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pasc@line Association</td>
<td>2006</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commission Femmes du Numérique</td>
<td>2011</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ecole"42”</td>
<td>2013</td>
<td>x x x x x</td>
<td></td>
</tr>
<tr>
<td>IE</td>
<td>Springboard</td>
<td>2011</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smart Futures</td>
<td>2012</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fast Track to IT</td>
<td>1999</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>LT</td>
<td>Window to the Future</td>
<td>2012</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg Engineering Trainee Days</td>
<td>n.d.</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NEXTLEVEL.LU</td>
<td>2011</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>eSkills in School Population</td>
<td>n.d.</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formação e certificação: ECDL</td>
<td>n.d.</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>LV</td>
<td>Formação em TI para PME</td>
<td>2012/2015</td>
<td>x x x x x x</td>
<td></td>
</tr>
<tr>
<td>Países</td>
<td>Iniciativa</td>
<td>Início</td>
<td>Parceiros</td>
<td>Enfoque</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Governo</td>
<td>Empresas</td>
</tr>
<tr>
<td>AT</td>
<td>Microsoft Partners: learning mentors programme</td>
<td>2012</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>BE</td>
<td>Get Qualified Scheme</td>
<td>2006</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>DK</td>
<td>Digivaardig & Digiveilig</td>
<td>2009/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>DE</td>
<td>“North-East Cluster of Digital Education”</td>
<td>2010/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>FI</td>
<td>Paraphr e-Skills Manager</td>
<td>2013/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>FR</td>
<td>Especialistas em TIC na administração pública</td>
<td>2013/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>IE</td>
<td>Internet Segura</td>
<td>2005</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>IT</td>
<td>PME Digital</td>
<td>2012/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>MT</td>
<td>Microsoft Partners: learning mentors programme</td>
<td>2012</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NL</td>
<td>Get Qualified Scheme</td>
<td>2006</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>PL</td>
<td>Digivaardig & Digiveilig</td>
<td>2009/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>RO</td>
<td>“North-East Cluster of Digital Education”</td>
<td>2010/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>SE</td>
<td>Paraphr e-Skills Manager</td>
<td>2013/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>SL</td>
<td>Especialistas em TIC na administração pública</td>
<td>2013/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>SK</td>
<td>“North-East Cluster of Digital Education”</td>
<td>2010/2015</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>UK</td>
<td>Paraphr e-Skills Manager</td>
<td>2013/2015</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Na secção seguinte, apresentamos uma explicação mais detalhada de algumas destas iniciativas. As iniciativas selecionadas foram classificadas como “boas práticas” à luz de uma análise de benchmarking aplicada pela Empirica (EC, 2014b). São 13 os países protagonistas destas iniciativas, a saber: Áustria (AT), Bélgica (BE), Alemanha (DE), Dinamarca (DK), Estónia (EE), Finlândia (FI), França (FR), Irlanda (IE), Itália (IT), Malta (MT), Holanda (NL), Suécia (SE), Reino Unido (UK).

Elaborámos o Gráfico 18 e o Quadro 8 de modo a fazer uma súmula das iniciativas por país, principais autores (main driver/initiator) e principais públicos-alvo (main target group). As 17 iniciativas selecionadas, por serem transversais, cada uma delas dirige-se a mais do que um público-alvo. Uma quantificação da distribuição destes focos permite-nos constatar que as fases escolares (básico, secundário, superior) são uma preocupação central das iniciativas. Por outro lado, os “outsiders” destas áreas, raparigas/mulheres, desempregados e profissionais de outras áreas, ainda têm pouca atenção por parte destas iniciativas.
Na secção seguinte, apresentamos uma breve explicaçao de cada uma das iniciativas, por público-alvo. Para o presente estudo interessam particularmente as iniciativas que promovam a formação de novos públicos e o desenvolvimento destas competências do lado da oferta de mão-de-obra. Serão destacadas, por isso, as iniciativas que se inserem nesses objetivos, nomeadamente: jovens em fase escolar (básico, secundário e superior); jovens e adultos em fase de requalificação; jovens mulheres.
Quadro 8. Boas Práticas em TICE a nível europeu, em curso (seleção)

<table>
<thead>
<tr>
<th>Países</th>
<th>Projeto</th>
<th>Duração</th>
<th>Iniciativa</th>
<th>Público-alvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Frauen indie Technik - Women Into Technology,FIT</td>
<td>2006-...</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Research Programme Sparkling Science</td>
<td>2007-2017</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BE</td>
<td>Evoliris ICT Reference Centre of the Brussels Region</td>
<td>2009-...</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DE</td>
<td>FinishIT</td>
<td>2011-...</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Software-Campus</td>
<td>2011-...</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DK</td>
<td>New High School Subject, “Computational Thinking”</td>
<td>2011-2014</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EE</td>
<td>IT Academy Program</td>
<td>2012-2015</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FI</td>
<td>Nokia Bridge Program, Finland&worldwide</td>
<td>2011-...</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FR</td>
<td>Pasc@line Association</td>
<td>2006-...</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IE</td>
<td>Coder Dojo</td>
<td>2011-...</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IT</td>
<td>Level 8 Conversion Programme</td>
<td>2012-2013</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Rete Competenze perl’Economia Digitale</td>
<td>2012-2014</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MT</td>
<td>Get Qualified Scheme</td>
<td>2006-...</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NL</td>
<td>ECF-NLWorking Group</td>
<td>2011-2013</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SE</td>
<td>Womentor</td>
<td>2007-...</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>UK</td>
<td>E-Skills</td>
<td>2003-...</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>ITMB Degree</td>
<td>2005-...</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Fonte: Adaptação de EC, 2014b.
1.1. Crianças e jovens em fase escolar: básico, secundário e superior13

\textit{Coder Dojo (Irlanda e vários países)}

Esta iniciativa surgiu na Irlanda em 2011 e trata-se de uma rede mundial de “clubes de código”. Conta com o envolvimento do sector privado, dos sindicatos e de organizações da sociedade civil e dirige-se principalmente a crianças e jovens do ensino básico entre os 8 e os 18 anos. O objetivo é serem clubes de acesso livre, geridos por equipas de voluntários e com base no uso livre de softwares de “open source”. O criador James Whelton, com ajuda do investidor Bill Liao, conseguiu expandir esta iniciativa pelo mundo. Atualmente está presente em cerca de 30 países, Portugal incluído (só na Irlanda há cerca de 100 clubes). Os encontros ocorrem em vários locais tais como bibliotecas, cafés, museus e outros (EC, 2014b: 171; http://coderdojo.com).

\textit{Nova disciplina escolar: “Pensamento Computacional” (Dinamarca)}

\textit{IT Academy Program (Estónia)}

É um programa de desenvolvimento de competências TIC dirigido ao sistema educativo, como um todo (alunos de todos os ciclos e professores/formadores). É da iniciativa da Fundação para as Tecnologias da Informação da Estónia e tem o envolvimento de diversos parceiros, públicos e privados. O programa é financiado pelo

ministério da Educação (€2,7 milhões em 2013/2014). O objetivo é melhorar a qualidade da educação nestas competências, promover a abertura de cursos no ensino superior, e colocar a Estónia no panorama internacional como um país de referência em termos de mercado de trabalho e de investigação/ especialização em TIC (EC, 2014b: 202; http://studyitin.ee/).

IT Management for Business Degree (Reino Unido)

Trata-se de um curso criado em parceria com mais de 60 empregadores de diferentes sectores e dirigido, particularmente, para o sistema educativo. O objetivo é desenvolver conteúdos técnicos, empresariais e interpessoais que tornem as pessoas mais competitivas no mercado de trabalho atual. Existe desde 2005 e mais de 1000 estudantes já frequentaram este curso. Trata-se de um curso de licenciatura para estudantes que querem ter competências em gestão e em tecnologias de informação. Atualmente existe em cerca de 20 universidades no Reino Unido. A procura deste curso tem crescido, em média, 24% por ano. Paralelamente, cerca de 33% dos estudantes são mulheres, um número duplicamente superior à proporção de mulheres em todos os cursos de informática no RU (EC, 2014b: 206).

Associação Pasc@line (França)

É um programa abrangente do ponto de vista dos parceiros e do público-alvo. É uma associação que foi criada em 2006 como uma plataforma entre 75 instituições do ensino superior (engenharia e gestão, principalmente), mais de 1200 empresas e dois sindicatos do sector. O objetivo fundamental é promover o diálogo entre as instituições académicas e as organizações do sector das TIC. Esta associação tem como referência explícita o quadro de referência das competências digitais da Comissão Europeia (e-skills framework). A meta fundamental a que se propõe é de promover a atratividade das profissões e do trabalho digitais para os mais jovens, com a preocupação de motivar as raparigas para estas áreas. Em termos práticos, esta associação procura: desenvolver as TIC como uma disciplina opcional para os estudantes mais jovens; desenvolver níveis de mestrado nestas áreas e uma maior transversalidade destas competências a todas as áreas; desenvolver competências de e-liderança. (EC, 2014b: 220; http://www.assopascaline.fr/pascaline).

Programa de investigação Sparkling Science (Áustria)

Trata-se de um programa introduzido em 2007, dirigido ao ensino básico e secundário (com enfoque também nas raparigas) e aos agentes educativos (professores e formadores). Tem o envolvimento do governo, por via do Ministério Federal para a Ciência e a Investigação. Foi um programa introduzido para promover o talento dos jovens. A ideia é as escolas desenvolverem projetos de investigação em cooperação com as universidades e instituições de investigação. Os dados mostram que em 2013 os cientistas trabalharam com jovens estudantes no total de 211 projetos, envolvendo cerca de 60 mil crianças e jovens. No que respeita a verbas, desde 2008 que foram investidos cerca de 18,5 milhões neste programa e há previsão para continuar até 2017 (EC, 2014b: 231; http://www.sparklingscience.at/en/)
Software-Campus (Alemanha)

Trata-se de um projeto que envolve o governo, o sistema educativo e empresas de outros sectores. Especialmente dirigido aos alunos do ensino superior, visa reforçar as competências tecnológicas e transversais dos alunos de mestrado e de doutoramento. Todos os participantes têm um mentor (um executivo de topo de uma empresa parceira), podendo beneficiar dos conselhos e da visão de figuras que são líderes em empresas TIC. Desta maneira estes estudantes conseguem criar redes com profissionais de topo. Bosch, DATEV, DHL, Deutsche Telekom, SAP, Siemens, Software AG, Scheer Group e Holtzbrinck são algumas empresas parceiras (EC, 2014b: 227; http://www.softwarecampus.de)

Caixa 3. Apps for Good International

Trata-se de um movimento educativo tecnológico do CDI no Reino Unido que começou em 2010. Apps For Good desbloqueia o talento dos jovens através de programas de aprendizagem criativa, em que os alunos utilizam as novas tecnologias para projetar e fabricar produtos que podem fazer a diferença para a sua comunidade. Tem parcerias com mais de 717 escolas e 23 mil estudantes de todo o Reino Unido. Depois de uma análise profunda sobre a expansão internacional durante o ano de 2013/14, em 2014/15 a Apps For Good decidiu dar os primeiros passos alargando a sua atividade para um pequeno número de pilotos internacionais em Espanha, Portugal, Polónia e Estados Unidos da América, com um total de 75 escolas. Em 2013 ganhou o prémio Mundial da Google para a melhor aplicação social. (cf. Apps for Good. Relatório de Avaliação e Impacto 2014/2015: 80; http://www.appsforgood.org/)

Caixa 4. Código inGenius – colaboração Escola-Mercado de Trabalho

A colaboração entre a escola e a indústria está a tornar-se cada vez mais comum na Europa, em específico nas áreas da ciência, tecnologia, engenharia e matemática (CTEM), sendo crucial para ajudar os estudantes a terem uma perspetiva da "vida real" e da importância da aplicabilidade destes conhecimentos na investigação, na indústria e nas empresas. O código inGenious é a primeira tentativa a nível europeu para guiar as escolas e as empresas na criação desta crucial e estratégica colaboração. (cf. http://eskills.dge.mec.pt/recursos/codigo-ingenuous-colaboracao-escola-industria)

1.2. Jovens e adultos em fase de requalificação

Programa de Reconversão nível 8 (Irlanda)
Trata-se de um programa abrangente que envolve vários parceiros públicos e privados e é dirigido principalmente para universidades e para o mercado de trabalho das TIC. É uma medida de curto-médio prazo da Autoridade do Ensino Superior, no âmbito do Plano de Ação TIC. Pretende contribuir para a qualidade da formação dos estudantes nestas matérias. Proporciona um diploma do ensino superior, intensivo, de nível 8 (licenciatura), facultado pelas instituições de ensino superior. Tem a duração de 1 ano, é dirigido para desempregados licenciados já com alguns créditos e aptidão para programar. Privilegiam formações em construção e engenharia (com forte orientação numérica). Tem uma quota limitada de 769 lugares (no total dos cursos, para o país inteiro, por ano) e oferece a possibilidade um estágio de 6 meses numa empresa parceira (EC, 2014b: 210; www.ictskills.ie/).

Get Qualified Scheme (former My Potential, Malta)

Projeto que tem o envolvimento do sector público e do sector privado, é dirigido principalmente para desempregados e trabalhadores formados noutras áreas distintas da área das TIC, que tenham já completado a sua educação formal e que querem continuar a estudar e a investir em formação. Trata-se de um projeto de formação que procura promover qualificação e certificação de competências exigidas pelo mercado de trabalho. Este programa tem contribuído para o aumento do número de profissionais das TIC em Malta. Os cursos que são desenvolvidos ao abrigo desse programa são variados e oferecerem várias possibilidades de desenvolvimento, tais como, estágios, certificações profissionais e académicas. (EC, 2014b: 198; http://www.maltaenterprise.com/en/support/get-qualified).

Nokia Bridge Program (Finlândia/mundo)

É um programa oriundo diretamente da própria indústria e é dirigido particularmente para trabalhadores desempregados/dispensados da Nokia, na sequência da vaga de reestruturação que começou no início desde década. Só na Finlândia, a Nokia reduziu cerca de 5000 trabalhadores entre 2011 e 2013. Trata-se de um programa lançado em Abril de 2011, já presente em 13 países diferentes (embora mais intensivamente na própria Finlândia). Este programa envolve “coaching” de carreiras, apoio na melhoria e promoção de CV, formação específica e protocolos com universidades para a promoção de novas oportunidades de aprendizagem de acordo com as necessidades do mercado de trabalho. Paralelamente, este programa proporciona financiamento para start-ups, articulação com investidores (angel investors) e formação empresarial. Os dados mostram que ao abrigo deste programa foram criados cerca de 1000 start-ups (mais de 400 só na Finlândia). O programa tem financiamentos entre 10 mil e 25 mil euros a serem atribuídos a ex-trabalhadores da Nokia que revelem um potencial de negócio destacado. Em colaboração com instituições de ensino foram desenvolvidas ações de formação gratuitas para os trabalhadores dispensados, tais como a LIKE, um programa de formação oferecido na Universidade de Tecnologia de Tampere mais focado em competências de liderança e empresariais (EC, 2014b: 215; http://press.nokia.com/2013/05/10/nokia-people-planet-report2012-published/).

Finish IT (Alemanha)
Esta iniciativa resulta de uma parceria entre o governo e o tecido empresarial alemão (PME) e é dirigido especialmente ao segmento o ensino superior. Trata-se de um projeto que pretende apoiar os estudantes que abandonam o ensino superior, os trabalhadores que pretendem mudar de carreira, os imigrantes cujos diplomas na área das TICE não são reconhecidos e pessoas que pretendem obter, a curto prazo, um diploma profissional nestas áreas. É um programa de um ano de duração, que combina ensino técnico (por módulos) e estágios numa empresa do sector. Inicialmente foi promovido pelo Ministério Federal da Educação e da Investigação e tem sido gerido pelo Cyber Forum, uma rede constituída por agentes da indústria das TICE em parceria com as câmaras de comércio e indústria locais, entre outros (EC, 2014b: 191; http://www.finish-it.info/).

1.3. Jovens mulheres e as TICE

Frauen indie Technik (Women Into Technology, Áustria)

Trata-se de um programa focado no ensino básico e secundário, nos agentes educativos (professores e formadores) e, particularmente, nas jovens mulheres. É uma iniciativa que procura promover o interesse das raparigas para estudos na área tecnológica. São mostradas as oportunidades profissionais nesta área aos estudantes das escolas secundárias. Na prática, são usados “role models”, designados também por embaixadoras, que são estudantes universitárias ou diplomadas que explicam as suas escolhas aos/as alunos/s e os/as motivam a escolherem estas áreas (EC, 2014b: 195; http://www.fit.tugraz.at/)

Womentor, European Federation of Mentoring for Girls and Women (Suécia)

Trata-se de um projeto lançado em 2007 (tem um ciclo de vida anual) e que envolve diversos parceiros do sector público e do sector privado, nomeadamente através do Ministério da Economia, dos Transportes e da Comunicação e da Associação de Comércio Sueca para o sector das TIC (IT&Telekomföretagen). Quando foi lançado, cerca de 30 grandes empresas suecas de TIC juntaram-se com o objetivo de aumentar a competitividade da Suécia através do incremento de mais mulheres em posições de liderança no sector das TIC e dos media. É um programa de 1 ano dirigido a mulheres que estão a dar os primeiros passos em posições de gestão/administração. Estas mulheres são acompanhadas durante esse ano por um/a mentor/a experiente, que lhes transmite orientação e conhecimentos para que possam desenvolver as suas competências de liderança e progredir na sua carreira. Desde 2007, que têm participado mais de 50 empresas e 400 mulheres gestoras (EC, 2014b: 235; http://www.womentor.eu/).

Outros projetos em curso na Europa e no Mundo

Para responder à necessidade de motivar e criar melhores condições de aproximação do segmento feminino às TICE, foi criado em 2008 o Centro Europeu para as Mulheres e
as Tecnologias (ECWTM). Enquadra-se na agenda Digital para a Europa e procura ser também uma plataforma onde se divulgam ferramentas de trabalho e boas práticas nos vários países da Europa. A característica essencial desta plataforma é a sua natureza transversal e orientada para o mesmo objetivo: aumentar o número de mulheres e de raparigas nas TICE.

Caixa 5. European Centre for Women and Technology (ECWTM) e algumas iniciativas em curso

Criada em 2008 e sediada na Noruega, trata-se de uma parceria multissectorial constituída por mais de 130 organizações, públicas, privadas, académicas e não-governamentais que procuram trabalhar em conjunto de modo a aumentar significativamente o número de raparigas e de mulheres nas tecnologias. É a plataforma que está a liderar ao nível europeu a estratégia da Agenda Digital para a dimensão de género. O mote desta plataforma é “Let’s make it happen together”. Ao abrigo desta estratégia, foram criadas algumas iniciativas, tais como: Women and Girls Go Digital, uma plataforma de 17 parceiros gregos e 3 europeus (em preparação para ser replicada noutros países, Portugal incluído); o Digital Innovations for Growth Academy (DIGA), um projeto de Erasmus liderado pela Women’s Organization no Reino Unido, uma das maiores organizações que apoia a formação e outros projetos dirigidos às mulheres; projeto DAME, Dispositivo de Apoyo a la Mujer Emprendedora, promovido pela cidade de Gandia (Espanha), dirigido a cerca de 40 mulheres empresárias, onde se procura desenvolver as suas competências empreendedoras e apoiar as suas start-ups em todas as fases do negócio.

(Com a referência: http://www.ecwt.eu/en/home)

Fora da Europa, a criação de mais e melhores oportunidades para as mulheres e raparigas que pretendem desenvolver os seus percursos nas áreas TICE e CTEM também tem sido uma preocupação. Nos EUA, a Associação Americana de Mulheres Universitárias tem desenvolvido estudos e recomendações neste sentido. Paralelamente, é importante criar iniciativas simbólicas que sensibilizem a sociedade para este problema e a partir das quais possam surgir novos projetos e ideias. A celebração do Dia das Jovens Mulheres nas TIC em vários países do mundo, em vigor desde 2011, procura preencher também esse objetivo.

Caixa 6. Associação Americana de Mulheres Universitárias (WWUC) “Empowering Women”

123
Esta associação levou a cabo um projeto de investigação que visou estudar e divulgar resultados sobre o problema da falta de mulheres nas áreas CTEM. Os resultados mostram que ainda há barreiras sociais e culturais nas universidades que continuam a bloquear as oportunidades de participação das mulheres nestas áreas. Entre várias recomendações, destacam-se as seguintes: 1) “give her a hero”: promover figuras de referência femininas nestas áreas de modo a motivar o interesse das raparigas; 2) investir na imaginação das raparigas, por exemplo, através de brinquedos mais desafiante e próximos destas áreas; 3) redefinir a linguagem e formas de abordagem a estas áreas de modo a romper estereótipos (ex. matemática e ciência não são áreas “aborrecidas” nem “geeks”); 4) envolver as raparigas em clubes e atividades de grupo próximos destas áreas (ex. clubes de robótica; programas de verão/férias).

Estabelecedo em 2011, este dia tem sido celebrado em 150 países pelo mundo, com mais de 5300 eventos e a participação de mais de 177 mil raparigas. A próxima celebração é no dia 28 de Abril de 2016. No dia 8 de abril de 2011, pela resolução 70 da UIT - União Internacional de Telecomunicações, e com o objetivo de defender os interesses e oportunidades das jovens mulheres e incentivá-las a escolher uma carreira profissional neste sector, a UIT estabeleceu o “GIRLS in ICT Day” (Dia das Jovens Mulheres nas TIC), a ser comemorado todos os anos e mundialmente, na quarta quinta-feira do mês de abril. O mote principal de comunicação é “Expand horizons. Change attitudes.”

(cf. http://girlsinict.org/)

Outras iniciativas: públicos-alvo transversais e sensibilização

Evoliris, Centro de Referência na área das TIC (Bélgica)

É uma iniciativa do governo belga e trata-se de um centro de referência de TIC, que resulta de uma fusão ocorrida em 2009 de vários centros de formação em TIC e do complemento de uma nova função: servir de observatório do mercado de trabalho e da adequação entre a oferta e procura de competências. Entre as várias iniciativas podem destacar-se as seguintes: identificação de um conjunto de competências solicitadas pelos empregadores (tais como, gestão de redes e “web developer”); organização e coordenação de formação profissional (cerca de 2000 formandos por ano, em 2012); divulgação do jogo “Infinity”, que procura sensibilizar jovens para as profissões das TIC (EC, 2014b: 187; http://www.evoliris.be)

E-skills (Reino Unido)
Uma iniciativa da indústria das TIC, transversal a vários públicos, e que visa o desenvolvimento de competências digitais e a sua adequação ao mercado de trabalho. Faz parte da rede “Skills for Business”. Um dos exemplos é o Perfil de Competências Digitais (E-Skills), uma ferramenta online gratuita que permite que as pessoas autoavalien as suas competências tecnológicas e digitais. Este perfil faz parte da Academia Nacional de Competências para as Tecnologias da Informação (EC, 2014b: 182; http://www.e-skills.com/)

Caixa 8. Get Online Week

O *Get Online Week* é uma campanha anual promovida pela TELECENTER Europa, apoiada pela iniciativa europeia eSkills for Jobs 2014 e pela *Grand Coalition for Digital Jobs*. Pretende apoiar a capacitação digital de pessoas para usarem as TIC e a Internet de forma proficiente e segura e que lhes permita beneficiar do mundo de oportunidades de formação e emprego online neste domínio. Apoiado por empresas, ONG e autoridades públicas, a campanha é organizada todos os anos em março pelo Telecentro-Europa (TE), uma organização que representa as redes europeias de centros de aprendizagem de TIC. (cf. http://getonlineweek.eu/)

2. Panorama português: boas práticas e experiências

Neste tópico apresentamos, em primeiro lugar, um elenco de boas práticas e de experiências relatadas pelas instituições educativas e formativas que colaboraram neste estudo. Em segundo lugar, descrevemos um conjunto de práticas selecionados à luz dos públicos-alvo que são os eixos estruturantes deste estudo: jovens em fase escolar; raparigas/mulheres; desempregados em fase de requalificação. Em complemento (sob o formato de caixas e no Quadro 10) apresentamos exemplos de boas práticas e experiências reportadas noutras fontes informação secundárias e que se enquadram nos eixos desenvolvidos.

Nos relatos escritos das boas práticas e de experiências em TICE, participaram neste estudo 12 instituições educativas/formativas: 5 do ensino superior e 7 do ensino profissional. Através do preenchimento de guiões15, as instituições redigiram dois relatórios demonstrando as práticas e experiências recentes e/ou em curso que consideraram ser as mais importantes do ponto de vista do desenvolvimento de competências TICE, da captação de novos públicos e da sensibilização para estas áreas. No total, foram identificadas 46 práticas/experiências. No Quadro 9 fazemos um resumo de todas as iniciativas reportadas, por instituição, principais objetivos e público-alvo, vigência (quando é mencionada) e outros agentes envolvidos (promotores e/ou parceiros, quando são mencionados).

15 As instituições preencheram dois guiões “Experiências educativas/ formativas de sucesso em TICE” e “Boas práticas na mobilização de jovens para as áreas de TICE”, cuja análise foi feita em conjunto.
<table>
<thead>
<tr>
<th>Instituição/Organização</th>
<th>Iniciativas</th>
<th>Objetivos</th>
<th>Público-alvo</th>
<th>Vigência</th>
<th>Parcerias/promotores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensino Superior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instituto Politécnico de Tomar (IPT)</td>
<td>Academia Cisco</td>
<td>Formação extracurricular oferecida pelo programa NETACAD da Cisco. Permite que os alunos estudem à distância. Certificação.</td>
<td>Alunos de TICE do IPT.</td>
<td>2004-presente</td>
<td>Curso de Engenharia Informática ESTT, IPT</td>
</tr>
<tr>
<td>Projeto escolher ciência - Ciência Viva</td>
<td>Seminários, workshops e pequenos projetos que envolveram a modelação 3D e a programação.</td>
<td>Alunos do ensino secundário</td>
<td>2013-2014</td>
<td>Curso de Engenharia Informática ESTT, IPT; escolas secundárias de Tomar; empresas SketchPixel e Microsoft</td>
<td></td>
</tr>
<tr>
<td>Criação de um Centro de Inovação com a IBM/SoftInsa</td>
<td>Desenvolvimento e suporte de aplicações informáticas no ambiente do universo IBM</td>
<td>Docentes do IPT empresas, mercado de trabalho</td>
<td>2013-presente</td>
<td>Presidência IPT; Diretor ESTT; Município de Tomar; IBM / SoftInsa,</td>
<td></td>
</tr>
<tr>
<td>Universidade de Trás-os-Montes e Alto Douro (UTAD)</td>
<td>Sound Pictures and Multimedia (SPAM)</td>
<td>Workshops da área dos cursos, exposição trabalhos desenvolvidos pelos alunos, palestras</td>
<td>Alunos do ensino secundário</td>
<td>Regularmente</td>
<td>Escolas da região; empresas do sector</td>
</tr>
<tr>
<td>Cursos de Especialização Tecnológica</td>
<td>Cursos de TECs em Técnica de Multimédia - Audiovisuais e Produção dos Media</td>
<td>Alunos com o ensino secundário</td>
<td>Regularmente</td>
<td>IEFP</td>
<td></td>
</tr>
<tr>
<td>Workshops/cursos na área multimédia e marketing</td>
<td>Fotografia, design, desenho vetorial, Photoshop, imagem/vídeo, e-marketing</td>
<td>Alunos da universidade e outros</td>
<td>Regularmente</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Parcerias nas teses de mestrado com empresas</td>
<td>Empregabilidade na área da Engenharia Informática.</td>
<td>Alunos finalistas de mestrado</td>
<td>Regularmente</td>
<td>Empresas parceiras</td>
<td></td>
</tr>
<tr>
<td>Acesso a certificações internacionais</td>
<td>Laboratórios e conteúdos que permitem aos alunos poder obter estas certificações e melhorar o seu Curriculum</td>
<td>Alunos da universidade</td>
<td>Regularmente</td>
<td>IBM, MICROSOFT, CISCO</td>
<td></td>
</tr>
<tr>
<td>Universidade Portuguesa Infante D. Henrique</td>
<td>SmartDay</td>
<td>Sessões para os alunos experimentarem várias tecnologias e assistirem a pequenas demonstrações e workshops.</td>
<td>Comunidade escolar</td>
<td>Abril, 2015</td>
<td>Departamentos de Economia, Gestão e Informática; Empresas do sector</td>
</tr>
<tr>
<td>Concurso de programação</td>
<td>Sensibilizar os jovens para as profissões da área dos SI/TI Inclui um concurso só para mulheres iniciativa que visa promover o incremento do número de mulheres nesta área de acordo com objetivo da agenda digital.</td>
<td>Jovens, Raparigas</td>
<td>Maio, 2015</td>
<td>Departamentos de Economia, Gestão e Informática; Empresas do sector</td>
<td></td>
</tr>
<tr>
<td>Vamos às escolas</td>
<td>Despertar a curiosidade dos jovens pelas áreas de conhecimento envolvidas nas profissões de SI/TI.</td>
<td>Jovens do ensino básico/secundário</td>
<td>Durante o ano</td>
<td>Departamentos de Economia, Gestão e Informática; Empresas do sector; docentes da área de informática</td>
<td></td>
</tr>
<tr>
<td>Instituição/Organização</td>
<td>Iniciativas</td>
<td>Objetivos</td>
<td>Público-alvo</td>
<td>Duração</td>
<td>Parcerias/promotores</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Universidade de Coimbra</td>
<td>DEI Academy</td>
<td>Dar a todos os alunos uma forma rápida e simples de aprender conceitos abordados num curso de Engenharia Informática</td>
<td>Alunos do secundário</td>
<td>2008-presente</td>
<td>Departamento de Engenharia Informática da UC e escolas secundárias.</td>
</tr>
<tr>
<td></td>
<td>Inquérito e divulgação sobre empregabilidade</td>
<td>Inquérito de empregabilidade a ex-alunos do DEI e a sua divulgação na comunicação social. Sensibilização.</td>
<td>Público em geral; ex-alunos, alunos finalistas e potenciais alunos.</td>
<td>2012</td>
<td>Departamento de Engenharia Informática da UC</td>
</tr>
<tr>
<td></td>
<td>Divulgação na comunicação social de sucessos de investigação e empresariais do DEI</td>
<td>Divulgação de resultados dos projetos do Centro de Informática e Sistemas</td>
<td>Público em geral: academia, empresas, entidades públicas</td>
<td>1991-presente</td>
<td>Centro de Informática e Sistemas da Universidade de Coimbra; Departamento de Engenharia Informática da UC; Gabinete de Apoio a Projetos de Investigação Científica</td>
</tr>
<tr>
<td></td>
<td>Open DEI</td>
<td>Dar a conhecer aos potenciais interessados a nossa oferta educativa, bem como algumas atividades de investigação em curso no nosso Departamento.</td>
<td>Alunos do secundário</td>
<td>2014</td>
<td>Departamento de Engenharia Informática da UC</td>
</tr>
<tr>
<td></td>
<td>Conversas com ex-alunos</td>
<td>Divulgar casos de sucesso de ex-alunos do DEI e inspirar os alunos atuais.</td>
<td>Alunos dos cursos</td>
<td>2014-presente</td>
<td>Departamento de Engenharia Informática da UC</td>
</tr>
<tr>
<td></td>
<td>DEI - Dia Dissertação/Estágio</td>
<td>Oportunidade a todos os proponentes, internos e externos, para exporem as suas propostas. Os candidatos a primeiro emprego poderem falar diretamente com potenciais empregadores.</td>
<td>Alunos finalistas dos cursos</td>
<td>2006-presente</td>
<td>Departamento de Engenharia Informática da UC</td>
</tr>
<tr>
<td>Escola Superior de Educação de Paula Frassinetti</td>
<td>Pós-Graduação TIC em Contextos de Aprendizagem</td>
<td>Requalificação para competências na área de Tecnologia e Comunicação Educativa.</td>
<td>Professores desempregados (várias áreas)</td>
<td>1 ano</td>
<td>Departamento de Formação de Professores;</td>
</tr>
</tbody>
</table>
Ensino profissional

<table>
<thead>
<tr>
<th>Instituição/Organização</th>
<th>Iniciativas</th>
<th>Objetivos</th>
<th>Público-alvo</th>
<th>Duração</th>
<th>Parcerias/promotores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro de Formação Profissional da Indústria da Eletrónica, Telecomunicações, Energias e Sistemas da Informação (CINEL)</td>
<td>Fit4Jobs Formação para requalificação. Produção de Software e Programação para Web (C++ e HTML, Estágio).</td>
<td>Desempregados licenciados</td>
<td>3 meses/curso</td>
<td>Programa Escolhias, IEPF, Programa Progress (Comissão Europeia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Certificação de Laboratórios Ser um centro de referência nacional, moderno e de vanguarda do ponto de vista tecnológico que procura formar os melhores profissionais na área das TICE</td>
<td>Potenciais alunos; formadores; alunos já inscritos; empresas</td>
<td>Em curso</td>
<td>Empresas do sector. Colaboração com 125 empresas para estágios.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implementação do sistema Via Verde nas autoestradas portuguesas Aplicação de conhecimentos e articulação com o mercado de trabalho.</td>
<td>Comunidade</td>
<td>-</td>
<td>Brisa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implementação do sistema Via Verde nas autoestradas portuguesas Aplicação de conhecimentos e articulação com o mercado de trabalho.</td>
<td>Comunidade</td>
<td>-</td>
<td>ANA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Portugal Telecom ministro formação aos técnicos para Comunicações na Internet e Redes Telefónicas.</td>
<td>Técnicos/alunos; Formadores</td>
<td>-</td>
<td>Portugal Telecom (PT);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Criação de uma plataforma e-learning Desenvolvimento de conteúdos e-learning</td>
<td>Alunos do CINEL</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrupamento de Escolas de Padre Benjamim Salgado (Famalicão)</td>
<td>Concurso de Programação Desenvolver competências específicas, na área da programação; desmistificar o grau de exigência associada à programação de computadores; motivar os alunos para a área da programação; sensibilizar a participação de alunas; atrair alunos para cursos nária das Ciências Informáticas (481)</td>
<td>Alunos do curso profissional de técnico de informática de gestão; alunos do curso profissional de técnico de gestão e programação de sistemas informáticos</td>
<td>2010-2015</td>
<td>Grupo Disciplina de Informática; Universidade do Porto (ToPAS), Universidade de Aveiro (Tecla), Universidade Portucalense (PPUP) e Associação para a Promoção e desenvolvimento da Sociedade de Informação (Olimpíadas Nacionais de Informática - ONI).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mostra da Oferta Educativa e Formativa do AEPBS Dar a conhecer ao público na área de influência do AEPBS e a sua oferta educativa e formativa, destacando-se as ofertas em áreas TICE.</td>
<td>Alunos do 9º ano do AEPBS e de outras escolas da sua área de influência</td>
<td>2015 (Maio, duas semanas)</td>
<td>Diretores de Curso dos Cursos Profissionais/Serviço de Psicologia e Orientação</td>
<td></td>
</tr>
<tr>
<td>Escola Profissional de Espinho</td>
<td>Criação de uma Start-up Tecnológica Capitalizar e promover os trabalhos desenvolvidos pelos alunos em contexto de PAP (Prova de Aptidão Profissional)</td>
<td>Alunos finalistas dos cursos da escola</td>
<td>2014-presente</td>
<td>Empresas e entidades externas à escola.</td>
<td></td>
</tr>
<tr>
<td>Instituição/Organização</td>
<td>Iniciativas</td>
<td>Objetivos</td>
<td>Público-alvo</td>
<td>Duração</td>
<td>Parcerias/promotores</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Agrupamento de Escolas</td>
<td>Projeto PAT</td>
<td>Utilização da programação para o desenvolvimento de atividades lúdicas com um robot da lego</td>
<td>Alunos do 10º ano do curso de Gestão e Programação de Sistemas Informáticos; alunos do 9ºano (sensibilização)</td>
<td>2013-2015</td>
<td>Curso de Gestão e Programação de Sistemas Informáticos</td>
</tr>
<tr>
<td>Marinha Grande – Escola</td>
<td>Iniciação à programação no 1ºciclo</td>
<td>Fomentar a construção e mobilização de conhecimentos científicos em diferentes situações; desenvolver as capacidades de resolução de problemas, tomada de decisão e pensamento crítico; favorecer o desenvolvimento progressivo de sentimentos de autoconfiança, autonomia e cooperação com os outros</td>
<td>Turmas do 3º e 4º ano do 1ºciclo</td>
<td>2015-presente</td>
<td>Ministério da Educação</td>
</tr>
<tr>
<td>Nascente – Escola Secundária de Pinhal do Rei</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEVA - Escola Profissional de Aveiro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workshop Impressão 3D e Robótica</td>
<td>Permitir um contacto direto com materiais Tecnológicos mais recentes e inovadores</td>
<td>Alunos dos Cursos de Eletrónica, Automação e Comando, Eletrónica e Telecomunicações, Manutenção Industrial e Energias</td>
<td>2015 (Maio, 2 dias)</td>
<td>Print4fun3D (promotor)</td>
<td></td>
</tr>
<tr>
<td>Workshop “Brincar com…a Robótica e a Eletrónica”</td>
<td>Gosto pela Eletrónica e Robótica; funcionamento da eletrónica presente nos brinquedos.</td>
<td>Alunos do Pré-escolar do Infantário Centro Social da Vera Cruz</td>
<td>2015 (Maio, 3 dias)</td>
<td>EPA – uma turma do curso Técnico de Eletrónica, Automação e Comando</td>
<td></td>
</tr>
<tr>
<td>Projeto Shift & Play</td>
<td>Sensibilização, desenvolvimento e adaptação de materiais e produtos para os jovens com Necessidades Educativas Especiais, através da Eletrónica e Robótica. Empreendedorismo social</td>
<td>Crianças com necessidades especiais</td>
<td>2015 (Maio, projeto regular)</td>
<td>Infantários para a Campanha de Recolha de Brinquedos; várias empresas para obtenção de equipamentos; Curso Técnico de Instalações Elétricas; Curso Profissional de Técnico de Eletrónica, Automação; Instituições que trabalhem diretamente com crianças portadoras de multifacética para entrega dos brinquedos adaptados.</td>
<td></td>
</tr>
<tr>
<td>Projeto “Carrinho A-Mexer”</td>
<td>Orientação eficaz de idosos no interior de grandes superfícies comerciais, aumentando a autonomia desta população durante as compras de supermercado. (lista de compras num tablet)</td>
<td>Comunidade (população idosa)</td>
<td>-</td>
<td>Fundação Ilídio Pinho; Curso Profissional de Técnico de Eletrónica, Automação e Comando</td>
<td></td>
</tr>
<tr>
<td>Participação na sessão sobre “Vantagens e Perigos das Redes Sociais Virtuais”</td>
<td>Sensibilização dos nossos jovens para as vantagens e ameaças da internet</td>
<td>Alunos da escola</td>
<td>-</td>
<td>Universidade de Aveiro, Centro de Formação Galileu, IPAM e Núcleo de Informática da PSP de Aveiro</td>
<td></td>
</tr>
<tr>
<td>Semana Aberta das Tecnologias</td>
<td>Orientação dos alunos dos Cursos Vocationais e Cursos de Educação e Formação de qualificação de nível 2</td>
<td>Alunos</td>
<td>2014-2015</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Instituição/Organização</td>
<td>Iniciativas</td>
<td>Objetivos</td>
<td>Público-alvo</td>
<td>Duração</td>
<td>Parcerias/promotores</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>EPROMAT – Escola Profissional de Matosinhos</td>
<td>Participação em eventos tais como: Dia Aberto da Universidade Católica e na Mostra de Profissões do IEFP, Portugal Print e Didática</td>
<td>Divulgação de trabalhos realizados pelos alunos e sensibilização de novos públicos.</td>
<td>Público em geral, comunidade</td>
<td>Todos os anos</td>
<td>IEFP, instituições do ensino superior e outras organizações.</td>
</tr>
<tr>
<td></td>
<td>Oficinas em escolas básicas do concelho</td>
<td>Divulgação de trabalhos realizados pelos alunos e sensibilização das crianças</td>
<td>Crianças em fase escolar, comunidade</td>
<td>Regularmente</td>
<td>Escolas de ensino básico;</td>
</tr>
<tr>
<td></td>
<td>Realização de vídeos para a comunidade</td>
<td>Aplicação de conhecimentos dos alunos do curso de Multimédia.</td>
<td>Público em geral, comunidade</td>
<td>Regularmente</td>
<td>PSP; Movimento Democrático das Mulheres; curso técnico de Multimédia</td>
</tr>
<tr>
<td></td>
<td>Criação de Vídeos e Cobertura de Eventos</td>
<td>Aplicação de conhecimentos teóricos à prática e captação de novos alunos.</td>
<td>Público em geral, comunidade</td>
<td>Regularmente</td>
<td>Curso técnico de Multimédia</td>
</tr>
<tr>
<td></td>
<td>Participação no COMIC CON Portugal</td>
<td>Aplicação de conhecimentos teóricos à prática e captação de novos alunos.</td>
<td>Público em geral, comunidade</td>
<td>2015 (Dezembro)</td>
<td>Organização do Comic Con</td>
</tr>
<tr>
<td></td>
<td>Festival Nacional de Robótica</td>
<td>Sensibilização para a importância das áreas tecnológicas e consequente motivação dos alunos.</td>
<td>Alunos do curso de Técnico de Eletrónica e Telecomunicações</td>
<td>2014 (Maio, 4 dias)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concurso Projeto Ciência na Escola – Fundação Ilídio Pinho, Prémio anual.</td>
<td>Motivar todos os alunos de vários segmentos para o interesse pelas ciências e para a escolha de áreas tecnológicas através do apoio a projetos inovadores. Desenvolver um produto a partir de uma ideia inovador</td>
<td>Alunos dos Cursos Profissionais de Técnico de Eletrónica e Telecomunicações, de Técnico Multimédia</td>
<td>2013-presente</td>
<td>Fundação Ilídio Pinho; Eletrónica e Automação e Audiovisuais e Produção dos Média; Ministério da Educação e Ciência e o Ministério da Economia</td>
</tr>
<tr>
<td></td>
<td>Clube de Empreendedorismo</td>
<td>Potenciar a promoção do empreendedorismo e da inovação social.</td>
<td>Alunos do ensino secundário.</td>
<td>2015-presente</td>
<td>Incubadora de Empresas da Região de Aveiro (IERA);</td>
</tr>
</tbody>
</table>
2.1. A juventude digital: “SmartKids, smart life”

A preocupação com o segmento das crianças e a sua relação com as tecnologias, seja na escola ou noutros contextos, é cada vez mais evidente. A escola é um agente de socialização importante nas trajetórias das crianças e dos jovens, enquanto local onde se construto vocações e se aprendem formas de pensar e de se relacionar com o mundo, com o seu presente e o seu futuro. Neste sentido, a presença do “digital” e do “tecnológico” nas salas de aula, quer por via direta – através do ensino de conteúdos específicos de TIC - quer por via indireta – através do uso das TIC como plataforma pedagógica – é cada vez mais prioritária. Para além disso, fora da escola, para os jovens terem contacto com tecnologias, é necessário que as suas famílias tenham acesso a determinados recursos. Isto significa que a escola, ao disponibilizar um acesso gratuito e mais facilitado a estes recursos, está também a desempenhar um papel central no processo de inclusão digital.

Nesta linha, muitas das experiências e práticas de sucesso atuais assumem um maior enfoque nas fases iniciais de vida das crianças e dos jovens. Nos grupos de discussão que fizemos junto de jovens no ensino secundário foi notório o insuficiente contacto com a disciplina de informática nas suas trajetórias educativas, tal como muitos desses jovens expressaram. O contacto mais usual com estas áreas acontece por via da disciplina de TIC nas escolas, no 3º ciclo do básico. Começam, assim, a ganhar destaque algumas iniciativas desenvolvidas em escolas do ensino básico e secundário do país que procuram promover estas aprendizagens mais cedo.

A este nível, verificamos que existem várias iniciativas pontuais (ex. “Vamos às escolas”, da Universidade Portucalense), com objetivos de sensibilização para estas áreas. De caráter mais contínuo e formativo, destacamos duas iniciativas em curso focadas numa área “core” das TICE, a programação: uma iniciativa do Ministério da Educação, onde se promove a introdução de programação no 1ºciclo (2015/2016) e uma iniciativa da Academia de Código Júnior, em curso desde Janeiro de 2015, que pretende também generalizar o ensino da programação nas escolas. Paralelamente à programação, constatamos que outra das vias de aproximação ao digital/tecnológico para os mais novos ocorre através da área de multimédia, nomeadamente, através de projetos desenvolvidos ao nível do som, vídeo e imagem (ex. projeto “Conta-nos uma história”).

Finalmente, as práticas e experiências de sucesso são também aquelas que transmitem o “saber fazer” mas também o “saber ser” e o “saber estar”. Projetos que têm o apoio de vários parceiros na comunidade e na indústria de TIC e que articulam saberes tecnológicos com responsabilidade social (tal como o Apps for Good e o Shift & Play) são projetos muito relevantes na medida em que mostram as diferentes maneiras como as tecnologias e as suas aplicações podem ser úteis à sociedade e, ao mesmo tempo, contribuem para a formação da cidadania dos nossos jovens. As práticas que aqui se apresentam retratam algumas destas preocupações.

Ciência Viva (Instituto Politécnico de Tomar/Agência Nacional para a Cultura Tecnológica)
Este projeto esteve em funcionamento entre Janeiro de 2013 e Dezembro de 2014 e teve como objetivo aproximar os alunos das escolas secundárias às áreas das TIC. Estiveram envolvidos nesta ação os docentes da Licenciatura em Engenharia Informática, duas escolas secundárias de Tomar e as empresas SketchPixel e Microsoft. No decorrer desta ação foram realizados seminários, workshops e pequenos projetos que envolveram a modelação 3D e a programação. Escolher Ciência é um projeto da Agência Nacional para a Cultura Tecnológica e teve como objetivo aproximar o Instituto Politécnico de Tomar das escolas secundárias da sua área de influência. As ações foram maioritariamente do tipo workshop onde os alunos aplicaram conhecimentos de programação e modelação 3D. Segundo o Instituto Politécnico de Tomar (IPT), houve três fatores críticos para o sucesso desta iniciativa: o facto de as ações terem um cariz experimental; o facto de as ações se terem prolongado ao longo de 2 anos de uma forma contínua e persistente; e o facto de contarem com a participação de empresas de referência na área das TIC e da modelação e animação 3D. Segundo o IPT, apesar do projeto ter terminado, a instituição continua a colaborar de forma ativa com as escolas da região, através de projetos conjuntos, visitas, partilha de equipamentos e organização de seminários.

SPAM – Sound Picture and Multimedia (Universidade de Trás-os-Montes e Alto Douro)

A cada dois anos, os cursos de Comunicação e Multimédia da Universidade de Trás-os-Montes e Alto Douro (UTAD) promovem o Sound Pictures and Multimedia (SPAM), trazendo à universidade cerca de 600 alunos do secundário para, durante um dia, participarem em workshops da área dos cursos, visionarem a exposição com os trabalhos mais relevantes desenvolvidos pelos alunos e assistirem a palestras dinamizadas por empresas e profissionais de renome na área dos audiovisuais e produção dos média.

SmartDay (Universidade Portucalense)

Neste dia, a Universidade Portucalense (UPortucalense) apresenta um conjunto de 10 “Wake up sessions” e um conjunto de stands de empresas com demonstrações de tecnologias emergentes, com objetivo de captar alunos do ensino secundário para os seus cursos e promover a instituição junto de vários públicos. Nestas sessões, os alunos podem experimentar várias tecnologias e assistir a demonstrações e workshops. Trata-se de uma iniciativa desenvolvida em parceria com várias empresas peritas nas diferentes tecnologias que apresentam. A UPortucalense apresenta alguns exemplos, tais como: 1) VR - Virtual Mirror (Ray-Ban), tecnologia que permite experimentar virtualmente os últimos modelos de óculos Ray-Ban; 2) Programação de Jogos, onde se demonstra como criar um clone do FlappyBird; 3) Redes de Computadores, onde se demonstra a viagem de um pacote entre um emissor e um receptor; 4) Monitorização de social media, onde se utiliza uma ferramenta de monitorização de redes sociais; 5) “What's Your Dream Job?”, onde se joga um jogo de pergunta/resposta para descobrir a profissão; 6) Museu de Informática, onde se mostram computadores e outros equipamentos informáticos usados durante a história da instituição. Segundo o relato, mais de 120 alunos participaram nestas iniciaativas e espera-se que se repita no ano de 2016. Os alunos deixaram sugestões de atividades que gostariam.
de desenvolver, tais como: pilotar drones/ programar robôs; fazer jogos e torneios de jogos no computador; e aprender a programar em html e javascript.

“Vamos às escolas” (Universidade Portucalense)

Esta foi uma iniciativa desenvolvida pelo Departamento de Economia, Gestão e Informática durante o ano letivo 2014/2015. Visa despertar a curiosidade dos jovens pelas áreas de conhecimento envolvidas nas profissões de SI/TI. Na prática, há um conjunto de docentes da área de Informática que vão às escolas dar uma aula/ workshop, sendo oferecido previamente, a cada escola, um conjunto de seis temas a escolher para a aula. Um dos temas mais procurados foi o tema da programação. A iniciativa conseguiu ir a 10 escolas do ensino básico e 10 escolas do ensino secundário, cumprindo-se as metas inicialmente estabelecidas. Segundo os relatos, houve alunos das escolas secundárias que referiram que esta iniciativa os ajudou a decidir o curso/ instituição para continuarem a prosseguir os seus estudos. Futuramente, pretende-se alargar a iniciativa a outras escolas interessadas.

DEI Academy (Universidade de Coimbra)

Trata-se de uma iniciativa em curso desde 2008, organizada pelo Departamento de Engenharia Informática da Universidade de Coimbra. Destina-se a todos os alunos do secundário que possam estar interessados em seguir Informática no ensino superior. Este projeto pretende dar a todos os alunos uma forma rápida e simples de aprender conceitos abordados num curso de Engenharia Informática. Através do acesso a uma hiperligação16, os alunos do secundário interessados em seguir informática na universidade, podem aprender a programar. O projeto pretende ser alargado futuramente à Licenciatura de Design e Multimédia. No site da DEI Academy estão disponíveis diversos conteúdos, nomeadamente manuais para aprender a programar com a linguagem Python, artigos escritos sobre alguns tópicos interessantes de informática, desafios para tentarem resolver, entre outras atividades17. Em articulação com a DEI Academy, no futuro, pretende-se desenvolver a iniciativa “Clubes de Informática e Design”, um projeto-piloto envolvendo um número reduzido de escolas, nomeadamente duas escolas do concelho de Coimbra.

17 O projeto assenta sobre a linguagem de programação Python e disponibiliza diversos tutoriais sobre esta linguagem. Após a leitura de uma determinada matéria sobre a linguagem de programação Python, apresentam-se vários desafios que colocam a prova os conhecimentos adquiridos com os tutoriais abordados anteriormente. Os diferentes de tutoriais estão organizados em três níveis, de acordo com os conhecimentos dos utilizadores: Básico – Para quem nada sabe sobre programação. Possibilita a aprendizagem das bases necessárias para que o utilizador faça os seus primeiros programas. São abordados alguns conceitos que são ensinados no primeiro ano, primeiro semestre, no DEI; Intermédio – Destina-se a quem já conhece os conceitos básicos da programação (variáveis, funções, ciclos, seleção). Este nível permite tomar contacto com temas mais complexos. Por exemplo, listas, dicionários (hashables), arrays e outros conceitos importantes; Avançado – Tem como principais destinatários todos aqueles que já se consideram experientes e confortáveis a programar com todos os conceitos dos níveis básico e intermédio. Abordam-se temas que poderão ajudar o utilizador a ser mais do que um simples programador: “um bom programador”. Mais informações sobre este projeto podem ser encontradas em: http://academy.dei.uc.pt.
Projeto PAT (Agrupamento de Escolas da Marinha Grande Nascente)

Trata-se de um projeto desenvolvido entre 2013 e 2015. O projeto consistiu na utilização da programação para o desenvolvimento de atividades lúdicas com um robot da Lego. Teve início com os alunos do 10º ano do curso de Gestão e Programação de Sistemas Informáticos, visando um maior envolvimento dos alunos do curso e posteriormente a divulgação da experiência e promoção da área de Informática. O projeto PAT apresentou o trabalho desenvolvido, nomeadamente, o robot criado pelo grupo de alunos, à comunidade escolar. Deu-se prioridade à apresentação do projeto aos alunos do 9º ano, inserido no processo de orientação escolar e profissional, em colaboração com os serviços de psicologia e orientação. No total foram abrangidos cerca de 120 alunos do 9ºano. Face à constituição do Agrupamento de Escolas da Marinha Grande Nascente, da qual faz parte a Escola Secundária de Pinhal do Rei, o grupo de Informática entendeu ser muito pertinente dar continuidade ao projeto este ano, também com alunos do 10ºano. Segundo a Escola, pretende-se estender a experiência e os resultados aos alunos mais novos, nomeadamente, do 3º ciclo.

Iniciação à Programação no 1ºciclo (Agrupamento de Escolas da Marinha Grande Nascente)

Este projeto teve início neste ano letivo, de 2015/2016, e tem como objetivos gerais fomentar a construção e a mobilização de conhecimentos científicos em diferentes situações; desenvolver as capacidades de resolução de problemas, tomada de decisão e pensamento crítico; favorecer o desenvolvimento progressivo de sentimentos de autoconfiança, autonomia e cooperação com os outros. Como objetivos específicos, entre vários, destacamos os seguintes: resolver problemas e/ou criar histórias animadas; construir jogos com recurso ao desenvolvimento de programas informáticos; identificar um problema a resolver ou conceber um projeto desenvolvendo perspetivas interdisciplinares e contribuindo para a aplicação do conhecimento e pensamento computacional noutras áreas disciplinares (Português, Matemática, Estudo do Meio; Expressões Artísticas); efetuar a integração de conteúdos (texto, imagem, som e vídeo), estimulando a criatividade dos alunos na criação dos produtos (jogos, animações, histórias interativas, simulações, etc.); partilhar o produto produzido na internet; e articular ambiente escolar com o meio envolvente.

Workshop “Brincar com…a Robótica e a Eletrónica” (Escola Profissional de Aveiro)

Este projeto teve como promotor o curso Técnico de Eletrónica, Automação e Comando da Escola Profissional de Aveiro e decorreu durante dois dias, em maio de 2015. O público-alvo desta iniciativa foram os alunos do Pré-escolar do Infantário Centro Social de Vera Cruz e teve como objetivos principais: promover o gosto pela Eletrónica e Robótica a partir da pré-primária; promover o conhecimento do funcionamento simples da eletrónica presente nos brinquedos e através de atividades lúdicas; desenvolver um robot em LTF para exemplificação e em contexto de sala de aula; promover competências técnicas e de comunicação nos alunos promotores do workshop; promover o curso profissional de Eletrónica, Automação e Comando bem como o CATEC na comunidade. Segundo o relato, os alunos exerceram o papel de mentores e
hardware testers junto das crianças e os resultados mais importantes do workshop foram a implementação de boas práticas na concretização de um produto final e a promoção de competências técnicas e comunicacionais. A Escola Profissional de Aveiro pretende dar continuidade a esta iniciativa com o desenvolvimento de novos workshops nesta área.

Projeto Shift & Play (Escola Profissional de Aveiro)

O projeto Shift & Play, dinamizado por um grupo de alunos do Curso Profissional de Técnico de Eletrónica, Automação e Comando e monitorizado pelo respetivo Coordenador de Curso, prevê a realização de alterações funcionais em brinquedos e equipamentos técnico-didáticos específicos com o objetivo de os tornar adaptados e inclusivos, ajustando-os às limitações das crianças dotadas de necessidades educativas especiais. Depois de adaptados, os brinquedos (por exemplo, brinquedos eletrónicos que funcionem a pilhas e que integrem componentes como luz, movimento ou som) passam a funcionar apenas com um simples toque (de mão, de pé ou até mesmo de cabeça). O Shift & Play, projeto de empreendedorismo social, tem sido apresentado em diversos eventos, tais como, no evento final do Concurso de Ideias START XS, promovido pela Incubadora de Empresas da Região de Aveiro (IERA), tendo alcançado o 3º lugar entre 10 ideias de negócio finalistas provenientes de 10 Municípios da CIRA. O projeto conta com a parceria das seguintes entidades externas: HFA, S.A. e Globaltronic, S.A. (cedência de equipamentos específicos para apetrechar a oficina do brinquedo adaptado sediada no CATEC) e TV Lar (cedência dos consumíveis necessários à adaptação dos brinquedos) e tem sido amplamente divulgado junto de infantários do Concelho de Aveiro visando a recolha de brinquedos.

Caixa 9. Iniciação à Programação no 1º ciclo do Ensino Básico – Ministério da Educação

Dirigido às escolas públicas portuguesas, para os 3º e 4º anos do ensino básico, trata-se de um projeto-piloto lançado no ano letivo 2015-2016 e tem por objetivo pôr as escolas a ensinar programação. Esta iniciativa poderá ser dinamizada, quer na Oferta Complementar, quer nas Atividades de Enriquecimento Curricular, ficando esta opção a cargo dos órgãos internos do Agrupamento, nos termos do estabelecido nos respetivos diplomas legais. (cf. http://programacao1ceb.dge.mec.pt/apresentacao/)

Caixa 10. “Conta-nos uma história” - Podcast na Educação

Esta iniciativa pretende fomentar a criação de projetos desenvolvidos pelas escolas de Educação Pré-Escolar e 1.º Ciclo do Ensino Básico que incentivem a utilização das Tecnologias de Informação e Comunicação (TIC), nomeadamente tecnologias de

gravação digital de áudio e vídeo. Trata-se de um concurso promovido pelo Ministério da Educação e Ciência (MEC), através da Direção-Geral da Educação (DGE), do Gabinete da Rede de Bibliotecas Escolares (RBE) e do Plano Nacional de Leitura (PNL), em parceria com a Microsoft.

(cf. http://historias.dge.mec.pt/)

Caixa 11. Academia de Código - Júnior | Code for all

(cf. http://academiadecodigo.org/)

Caixa 12. Projeto educativo Apps For Good (AFG): projeto-piloto

Apps For Good é um projeto conjunto do CDI Portugal e do CDI Apps For Good, ambos membros do CDI Global - organização sem fins lucrativos, com a missão de capacitar pessoas através do uso da tecnologia. O projeto-piloto Apps For Good contou com a participação de 295 alunos e 32 professores de 16 escolas portuguesas que conceberam um total de 56 aplicações. À escala global, este programa originário do Reino Unido, engloba cerca de 23 mil alunos de 680 escolas de Portugal, Espanha, Reino Unido e EUA, e tem como objetivo estimular os jovens a aplicar o potencial da tecnologia para transformar as comunidades nas quais se inserem. O CDI Apps For Good Portugal teve como parceiros fundadores a Fundação Calouste Gulbenkian, a Fundação EDP e a Microsoft e como parceiros institucionais a Direção Geral da Educação, a Associação Nacional dos Professores de Informática (ANPRI) e a Associação Portuguesa para o Desenvolvimento das Comunicações (APDC). A estrutura do projeto engloba 5 módulos onde os alunos, em equipa, detetam problemas reais do seu dia-a-dia e áreas de interesse para quais, através do uso de tecnologia mobile, facebook e aplicações web, procuram encontrar a melhor solução.

Caixa 13. Concurso ONcontrol – Concurso de Desenvolvimento de Sistemas Microcontrolados, Instituto Politécnico de Setúbal

O concurso pretende incentivar os jovens do ensino secundário a desenvolver sistemas de controlo baseados na tecnologia Arduino. O Arduino é uma plataforma eletrónica open-source de prototipagem. Destina-se a jovens do ensino secundário e consiste em
criar um projeto com base no tema "Dá autonomia ao que te rodeia". Tem os seguintes objetivos: criar um projeto inovador na área tecnológica; desenvolver e aplicar um sistema Arduino no projeto; promover espírito crítico, empreendedor e criativo. (cf. http://www.ips.pt/ips_si/noticias_geral.ver_noticia?P_NR=6767)

2.2. Desenvolvimento do "software de oportunidades" para os/as jovens que escolheram as áreas TICE

No caso dos jovens que escolhem fazer o seu percurso educativo/formativo em TICE – seja por via do ensino secundário profissional através dos cursos de dupla certificação, de cursos pós-secundários como os CET e os TeSP, seja por via da licenciatura no ensino superior –, é também decisivo garantir motivação nas aprendizagens, expansão das suas capacidades e níveis de desempenho elevados. Para além do plano curricular subjacente aos cursos, uma análise às experiências formativas e educativas de sucesso neste âmbito mostra que a disponibilização de iniciativas extracurriculares constitui uma mais-valia quer para a versatilidade dos conhecimentos adquiridos, quer para o aprofundamento mais especializado em determinadas matérias. Para além da frequência destas ações, é apontado como fator de sucesso a sua certificação, pois é uma garantia de prestígio e reconhecimento nacional e, em alguns casos, internacional.

Uma outra preocupação tem sido com os moldes destas ações. De modo a facilitar o acesso a estas aprendizagens num registo "anytime, anywhere", revela-se importante acompanhar o desenvolvimento destas ações através, por exemplo, de plataformas e tutoriais de acesso à distância (ex. tal como acontece com a Academia Cisco, no IPT). Isto permite uma melhor conciliação das aprendizagens com a vida pessoal dos jovens e contribui para uma maior responsabilização e autonomia.

No âmbito de um maior "boost" das oportunidades dos jovens no mercado de trabalho, o incentivo à formação em contexto de trabalho tem sido uma das medidas de sucesso mais apontadas. Esta interligação pode ser feita por via dos estágios e por via do estabelecimento de protocolos com determinadas empresas do sector, onde os planos curriculares e os laboratórios das escolas/universidades/politécnicos são estreitamente adaptados às necessidades do mercado de trabalho (por exemplo, tal como acontece entre o CINEL e as empresas Vodafone e Samsung). Esta interligação também deve ser feita através do desenvolvimento de simbioses entre as competências tecnológicas e empreendedoras dos jovens destas áreas (por exemplo, a criação de uma start-up tecnológica na Escola Profissional de Espinho). Estes e outros exemplos são evidentes nas experiências recolhidas e que aqui se descrevem.

Academia Cisco (Instituto Politécnico de Tomar)

Em funcionamento desde 2004, esta academia proporciona oferta de formação certificada e reconhecida internacionalmente aos alunos de TICE do Instituto Politécnico de Tomar (IPT). Segundo o IPT, a formação oferecida pelo programa NETACAD da Cisco é uma referência em termos de qualidade e de inovação na forma como aborda a temática das redes de computadores. Este programa permite que o aluno
estude à distância e ao seu ritmo e que seja acompanhado, quer localmente, quer remotamente em regime de tutoria. Estão abrangidos nesta ação todos os alunos do IPT que queiram frequentar estas ações em regime extracurricular. Para além de ser um complemento à formação ministrada nos cursos de TICE do IPT, o facto de a formação ser certificada contribui também para o sucesso da ação. Esta ação pretende ser melhorada através da disponibilização de um laboratório remoto para que os alunos possam usar remotamente o equipamento que está instalado no laboratório de redes do IPT.

Workshops/ cursos de curta duração nas áreas de multimédia e marketing (UTAD)

Na UTAD têm sido desenvolvidas algumas medidas que fomentam o sucesso educativo dos seus alunos, tais como a promoção de vários workshops /cursos, direcionados aos alunos e outros interessados, para melhorarem os seus conhecimentos e desempenho nas tecnologias do audiovisual e dos média. Entre outros, já foram promovidas várias edições dos seguintes workshops / cursos: Fotografia – iniciação (50 horas); Design – Comunicação e Multimédia (25 horas); Desenho Vetorial – Criação e manipulação de imagens (50 horas); Ferramenta Photoshop (50 horas); Imagem/Vídeo – captação, registo e edição (50 horas); E-Marketing Mix (50 horas).

Interligação das áreas de Comunicação/Multimédia e de Informática com o mercado de trabalho (UTAD)

No primeiro e segundo ciclos do ensino superior dos cursos de Comunicação e Multimédia, a UTAD tem apostado em experiências em contexto empresarial no sentido de criar colaborações com empresas da área do Audiovisual e dos média, mas também com empresas e instituições que necessitam destas áreas, favorecendo, desta forma, o desenvolvimento técnico e científico dos seus alunos. No último ano, foram celebrados protocolos com as seguintes empresas/instituições: Associação de indústrias do Granito (AIGRA); Associação da Região do Douro para Apoio a Deficientes (ARDAD); R4 Douro Family; GlobalSport; GEN Design Studio; Primeiro Plano; Parque Biológico de Gaia; E_Levar; TV Transmontana; OPAL Publicidade; Duas Faces; Cloud Works; AgilStore; GNR; PSP; Dom Digital; GoUpBuzz; Beca Design. Paralelamente, desde o ano letivo de 2014/2015 que a UTAD realiza a quase totalidade das dissertações de mestrado em Engenharia Informática em colaboração com empresas. Tal situação tem permitido fazer a inserção dos alunos em empresas no momento em que estes ainda se encontram a frequentar o 2º ano do mestrado, contribuindo para o início da sua atividade profissional e para a atribuição de bolsas, por parte das empresas, que em muito têm permitido aliviar as dificuldades financeiras sentidas pelos estudantes. Já no plano de estudos do 3ºano (1ºciclo do ensino superior), houve a inserção de uma unidade curricular de “Seminário” que pretende fazer essa ligação ao mercado de trabalho através da vinda semanal de empresas, e dos seus projetos, à universidade.

Projetos de formação-trabalho e certificação de laboratórios (CINEL)

O CINEL, enquanto Centro de Formação Profissional da Indústria da Eletrónica, Telecomunicações, Energias e Sistemas de Informação, dispõe de uma oferta de
formação inicial nestas áreas, nas modalidades de cursos de aprendizagem e CET, com 80% a 90% de empregabilidade dos seus formandos.

No quadro de uma estratégia de realização da formação de acordo com as necessidades do mercado de trabalho, constitui política do CINEL, estabelecer relações de proximidade com as empresas e, nesse sentido, criar percursos de formação 100% adaptados a essas necessidades. O CINEL estabelece relações regulares com cerca de 125 empresas que colaboram através de formação on job.

Por outro lado, dispõe de um conjunto diversificado de laboratórios equipados com tecnologia moderna. Tem 22 laboratórios (17 em Lisboa e 5 no Porto) em áreas direcionadas para a Automação e Robótica; Eletropneumática; CA TV; CIM; Domótica – KNX; Energias Renováveis; Hardware, Redes e Sistemas Informáticos; ITED/ITUR e Fibras Óticas; Eletrónica Médica; Microssoldadura; Multimédia; Redes CISCO; Microsoft IT Academy e um Samsung Tech Institute. O CINEL tem igualmente dois laboratórios dedicados como é o caso do Samsung Tech Institute e da Vodafone (projecto em curso). Os laboratórios dedicados podem ser criados em parceria com empresas como as referidas e, como já se verificou no passado, com a Portugal Telecom. A destacar o facto de o CINEL dispor do único laboratório de electromedicina do país que forma técnicos para a instalação, manutenção e reparação de equipamento médico/hospitalar. Os equipamentos que integram este laboratório têm sido cedidos pelo Centro Hospitalar Lisboa Ocidental com quem tem uma importante parceria. Para além destes laboratórios o CINEL integra a rede mundial de laboratórios remotos (Rede Visir) que permite a ligação virtual a laboratórios de instituições de ensino superior sedeadas em vários países do mundo (Espanha, Alemanha, Índia, Suécia, etc.). Esta rede assenta no conceito de uma formação global “anytime, anywhere”.

Está em curso um processo de certificação pela Ordem dos Engenheiros para acreditação do CINEL enquanto entidade formadora para profissionais deste grupo, bem como a deslocação em 2016 à Polónia de técnicos para se qualificarem em tecnologia HCNA-HNTD (Huawei Certified Network Associate e Huawei Networking Technology Device (projeto financiado pelo Programa Erasmus +) e que tem como objetivo final não só a certificação dos formadores, como a criação de um laboratório dedicado que possa vir a ser certificado pela marca.

Criação de Start-up Tecnológica (Escola Profissional de Espinho)

Trata-se de uma iniciativa do Departamento Tecnológico e encontra-se em curso desde 2014. Os principais objetivos são capitalizar e promover os trabalhos desenvolvidos pelos alunos em contexto de PAP (Prova de Aptidão Profissional), introduzir técnicas para a elaboração de planos de negócios, promover o empreendedorismo, estabelecer parcerias com empresas e entidades externas e criar um espaço que promova a participação e troca de experiências entre ex-alunos, alunos, professores e outros convidados. Segundo os relatos, a empresa A&DI, apesar de ser muito jovem, já conseguiu criar alguns postos de trabalho e estabelecer parcerias com algumas empresas conceituadas a nível nacional e internacional em diversas áreas como, por exemplo, na área metalomecânica, têxtil e administração pública. Existem vários projetos em curso com uma grande margem de progressão, para além de inúmeras parcerias e muitas outras solicitações por parte de outras entidades, o que ajuda no desenvolvimento e
crescimento na empresa. O município de Espinho classificou a A&DI, como uma empresa de referência na área da inovação e das novas tecnologias.

Workshop de Impressão 3D e Robótica (Escola Profissional de Aveiro)

Trata-se de uma formação ocorrida em dois dias em maio de 2015 e teve por objetivos apresentar a impressão 3D como um processo de fabrico de um objeto tridimensional sólido e como método para prototipagem; promover a impressão 3D como uma ferramenta do futuro e utilizável em todas as áreas de atividade; e promover as competências e o interesse pela área da robótica. Participaram cerca de 300 alunos dos Cursos de Eletrónica, Automação e Comando; Eletrónica e Telecomunicações; Manutenção Industrial; e Energias. As atividades desenvolvidas possibilitaram a técnicos e a alunos um contacto direto com os materiais tecnológicos mais recentes e inovadores permitindo o desenvolvimento de interesses e de competências na área da robótica, mais especificamente na área da Impressão 3D. Segundo a escola, foi um bom estímulo, mobilizador/facilitador da orientação dos jovens para a área das TICE. Permitiu inclusivamente a concretização de um produto final para usufruto da Escola Profissional de Aveiro e a criação de troféus específicos para o evento “Grande Gala EPA 2015”.

Aplicação prática de aprendizagens: criação de vídeos e cobertura de eventos (Escola Profissional de Matosinhos - EPROMAT)

Na Escola Profissional de Matosinhos, os alunos do curso profissional de Multimédia têm vindo, ao longo dos anos, a realizar a cobertura de eventos (filmagens e fotografias) da Epromat como, por exemplo, a cerimónia de entrega de diplomas, as Eprojornadas, a Comemoração dos 20 anos da escola, o acolhimento de turistas no Terminal de Cruzeiros de Matosinhos e de Leça da Palmeira, o casting para participação num vídeo dos Lulla Bye, entre outras atividades inseridas no plano de atividades. Em parceria com a PSP criaram também um vídeo, sobre Prevenção Rodoviária, o qual serviu de divulgação/sensibilização, a nível nacional, desta campanha da PSP. Realizaram ainda um vídeo sobre o Gabinete de Apoio à Vítima de Violência também desta entidade. Criaram um vídeo sobre Violência Doméstica em parceria com a PSP, sobre o qual houve um tempo de antena na RTP onde foi referida a participação da Epromat nesta ação. Os alunos de Multimédia fizeram ainda vários spots publicitários da Epromat que foram posteriormente divulgados no website, moodle e facebook da escola. Segundo a instituição, a participação dos alunos nestas atividades, relacionadas com a criação de vídeos e fotografia, permite que desenvolvam competências técnicas e que apliquem os conhecimentos teóricos à prática. Permite ainda que tenham uma preparação mais adequada para a formação em contexto de trabalho e que tenham mais facilidade em trabalhar com as ferramentas técnicas exigidas no mundo do trabalho.

Caixa 14. Iniciativas do Instituto Politécnico de Setúbal na área da inovação
O Instituto Politécnico de Setúbal – que tem duas Escolas Superiores de Tecnologia, em Setúbal e no Barreiro - iniciou este ano o projeto IN2SET, em que, através da constituição de uma rede de trabalho regional (liderada pelo Politécnico), pretende fomentar a inovação da Península de Setúbal. De entre as várias áreas temáticas deste projeto contam-se o desenvolvimento da inovação em "Setores de média e média-alta tecnologia e serviços"; o “Empreendedorismo e inovação”; a celebração de um protocolo com a Ordem dos Engenheiros de modo a desenvolver o ensino e a prática da engenharia portuguesa; a transferência de tecnologia, numa lógica de intercâmbio de conhecimento e tecnologia entre instituições de ensino superior e/ou centros de pesquisa e empresas. (cf. http://www.ips.pt/ips_si/web_page.inicial)

Caixa 15. Cursos online de acesso livre UP2U – Instituto Politécnico de Leiria

Estes cursos são concebidos por professores e parceiros do Instituto Politécnico de Leiria com o apoio da sua Unidade de Ensino a Distância. São dirigidos principalmente aos alunos do ensino superior e do ensino secundário. Na sua generalidade, são cursos que privilegiam conteúdos sobre ferramentas digitais. Por exemplo, conhecer e saber trabalhar com o conceito de open access, saber produzir documentos digitais acessíveis, estruturar um curso no moodle e saber partilhar vídeos em contexto educativo. São cursos online de curta duração e gratuitos, sendo apenas necessário fazer um registo na respectiva página. Não têm tutores e responsabilizam os alunos a organizarem as aprendizagens ao seu próprio ritmo. É possível aos alunos testarem os seus conhecimentos e interagirem com outros participantes através de atividades, conteúdos multimédia, testes e fóruns de discussão. O slogan deste projeto é: “Aprender apenas depende de ti”. (cf. http://up2u.ipleiria.pt/pt/)

2.3. Reprogramar competências nos jovens e adultos: “a new upgrade and restart!”

Tanto de iniciativa pública (principalmente por via do IEFP) como de iniciativa privada, são vários os esforços para implementar estratégias no sentido de requalificar diplomados desempregados, nomeadamente provenientes de áreas de educação e formação com baixa empregabilidade, com o objetivo de, por um lado, combater o crescente nível de desemprego, nomeadamente de jovens e, por outro lado, poder vir a dar uma resposta mais imediata à procura não satisfeita de profissionais nas áreas das TIC.

Os focus-groups que este estudo fez juntamente com alguns formandos que se encontram a frequentar estes cursos de requalificação, permitem-nos perceber que a aproximação a novas aprendizagens na área das TICE em fase adulta (principalmente em vertentes mais “core”, tais como a programação), para além de muito condicionada pela situação de desemprego, ocorre por variadas razões. Há um perfil de procura que situa estas aprendizagens como saberes complementares às formações originais e que vê nestes cursos uma possibilidade de acrescentar competências; há um outro perfil de
procura que faz estes cursos numa lógica de reconversão do seu leque de competências (pela “distância” em relação às formações de origem) e que pretende alargar a versatilidade dos seus currículos e, eventualmente,icionar a investir nessa nova via; e finalmente um perfil de procura que freqüenta estes cursos pelo gosto pessoal ou pelo novo desafio que propiciam. Independente de as motivações serem diferenciadas, valorizam-se alguns dos denominadores comuns destes cursos: o facto de poderem vir a abrir novas perspetivas de empregabilidade a pessoas qualificadas, das mais diversas áreas, mas que se encontram em situação de desemprego; serem cursos “low-cost” (ou a custo-zero) para os participantes; serem de curta-duração; e terem uma forte componente prática. Nomeadamente os cursos que têm estágios incorporados facilitam a aproximação ao mercado de trabalho e são fatores atrativos para os formandos. Vejamos algumas experiências.

“Acertar o Rumo” (Universidade de Coimbra)

Trata-se de um curso de formação em Programação em Java, não conferente de grau, a decorrer desde 2013 (3ªedição) e sob a responsabilidade do Departamento de Engenharia Informática da Universidade de Coimbra. É um programa de requalificação profissional para Informática destinado a licenciados com dificuldade de encontrar emprego nas suas áreas de formação original e que revelem as competências adequadas à área das Tecnologias de Informação (TI) 19. É um curso promovido pelas empresas iTGROW, Critical Software e BPI, que se associam à Universidade de Coimbra, em parceria com o IEFp, para criar uma formação profissionalizante, totalmente orientada às necessidades empresariais. Estas instituições colaboram ativamente no planeamento e conceção deste programa e no direcionamento dos formandos para as empresas aderentes e respetiva colocação no mercado de trabalho.

O programa assenta em três eixos determinantes: seleção criteriosa, formação intensiva e estágio profissional. Centra-se no desenvolvimento de competências técnicas de programação e inclui uma componente de formação teórica e uma componente prática, com aplicação concreta em contexto de estágio. Os primeiros meses do programa são realizados em regime intensivo, 40h/semana, em que os formandos estão permanentemente acompanhados por docentes do Departamento de Engenharia Informática (DEI) da Universidade de Coimbra (UC). O estágio profissional é remunerado e tem a duração de 12 meses, podendo ser realizado numa das várias empresas parceiras do programa, tais como: CRITICAL Software, BPI, Novabase, Accenture, AIRC, PT, Everis, Present Technologies, Shortcut, ISA. Nesta última edição, houve cerca de 200 inscrições e foram selecionados 23 candidatos.

Formação pós-graduada em TIC em Contextos de Aprendizagem (Escola Superior de Educação Paula Frassinetti)

De acordo com a Escola Superior de Educação Paula Frassinetti, os diagnósticos realizados aos recém-diplomados na área de educação, em situação de desemprego, identificou a ausência de competências na área das TIC como uma das lacunas a preencher. Tendo em conta os desafios de formação emergentes, o curso de pós-
graduação “TIC em Contextos de Aprendizagem” procurou contribuir para a requalificação de professores desempregados, dos diferentes grupos disciplinares, de forma a desenvolverem competências e atitudes em Tecnologia e Comunicação Educativa. Avaliadas as várias edições desta pós-graduação, verificou-se que esta proporcionou a construção de um conjunto de conhecimentos que favorecem novas abordagens conceptuais no âmbito das tecnologias em contexto educativo; permitiu criar e adaptar recursos, metodologias e estratégias que se adequam às mudanças sociais decorrentes do constante desenvolvimento tecnológico; e proporcionou aos estudantes certificados um compromisso com a atualização e a especialização em TIC em contextos educativos. Os dados reportados revelam que dos 53 alunos desempregados inscritos, 20 conseguiram colocação na área das TIC, isto é, cerca de 38% dos estudantes viram a sua situação profissional ser alterada, ficando assim empregados. Alguns passaram a lecionar nas atividades extracurriculares e outros na docência da disciplina de TIC no 3º ciclo; dois alunos ficaram a trabalhar numa empresa de produção de conteúdos educativos multimédia. Em paralelo, houve outras oportunidades que foram criadas: participação em projetos europeus por parte de alunos e docentes, dos quais destacamos, o Project E-Teacher 2.0 - Empowering Teacher’s ICT-Pedagogical Competencies; criação do centro de eLearning ESEPF, tendo já sido implementados 25 cursos com a frequência de 2200 formandos (professores em exercício). Neste momento, o curso de pós-graduação foi reconvertido, preconizando uma metodologia de blended-learning, de forma a abranger um público territorialmente mais alargado e permitir a sua internacionalização. Procurando reforçar a sua atratividade e empregabilidade no mercado internacional, estão a ser introduzidos módulos lecionados em língua inglesa.

Fit4Jobs (CINEL)

Em articulação com o Programa Escolhas, o CINEL está a realizar dois cursos de requalificação para as TI designados por Fit4Jobs. Tratam-se de cursos inspirados no caso irlandês, que foi considerado uma boa prática e que levou a Comissão Europeia a criar uma linha de financiamento específica, no âmbito do Programa Progress, para a replicação desta experiência nos diferentes Estados-membros. Em Portugal, a implementação do projeto-piloto é da responsabilidade do CINEL. O Fit4Jobs consiste em formação para Produção de Software e Programação para Web (C++ e HTML), tem a duração de 275 horas e um estágio em empresa de 6 meses. Os formandos são oriundos de diferentes áreas, em que a diversidade de especialidades obriga a testar as potencialidades da formação em programação para a reconversão profissional e, a posteriori, a implementação das competências obtidas pelos participantes nas suas áreas de interesse.

Caixa 16. Academia de Código | Code for all

Com o objetivo de promover a literacia digital em Portugal e de criar consciência entre as gerações futuras do potencial das TI, a Academia de Código está a desenvolver o Programa Academia de Código. Este programa visa requalificar 10.000 desempregados licenciados, com idades até aos 30 anos, até ao final de 2020 dando-lhes competências que são valorizadas e apreciadas no mercado de trabalho, num sector onde a procura por
estes profissionais tem aumentado exponencialmente. As formações de programação e código têm a duração de 3 a 4 meses intensivos. O primeiro curso já está em execução desde Setembro de 2015 e prevê-se a abertura de mais turmas/ cursos. Este programa assume como mote de comunicação: “Ajudar Portugal a surfar o tsunami digital, ajudando crianças e jovens licenciados no desemprego a programar um presente com futuro”. (cf. http://academiadecodigo.org/)

2.4. Sensibilização e aproximação à comunidade: “live connected”

Paralelamente às experiências formativas e educativas que as várias instituições desenvolvem, motivar jovens para escolherem as TICE como percurso de formação e profissional extravasa estas atividades. Os potenciais “insiders” nas TICE não são conhecidos e podem ser motivados através de iniciativas divulgadas de forma mais massificada. Para além disso, encarregados de educação e outras figuras que ajudam os jovens a tomar decisões, podem tornar-se importantes veículos de motivação quando informados e sensibilizados para as oportunidades de trabalho geradas nestas áreas. Por exemplo, conhecer dados de empregabilidade e casos de sucesso pode sustentar este tipo de decisões, uma vez que permite projetar cenários profissionais com menor incerteza. Participar numa mostra tecnológica permite também uma maior aproximação a potenciais interessados e interessadas, na medida em que, neste tipo de iniciativas, é possível contactar com os “ouputs” das aprendizagens. Para os jovens que já escolheram percursos nestas áreas, a possibilidade de projeção nacional e internacional dos seus
projetos – por exemplo, através de um festival nacional de robótica e de prémios internacionais - acrescenta motivação para continuarem este percurso e para inovar nos seus projetos e, em simultâneo, constitui um fator prestigiantes que potencia atratividade das TICE do ponto de vista de opção de estudo ou de trabalho futuro. Vejamos algumas experiências e práticas neste sentido.

Inquérito aos ex-alunos, divulgação de dados de empregabilidade e de casos de sucesso (Universidade de Coimbra)

Em 2012, a Universidade de Coimbra (UC) aplicou um inquérito de empregabilidade a ex-alunos do DEI (Departamento de Engenharia Informática) e promoveu a sua divulgação na comunicação social. Este tipo de recolha e divulgação de informação é uma via para sustentar o argumento da empregabilidade das áreas dos cursos. Segundo o relatório da UC, a taxa de emprego do curso de Engenharia Informática ultrapassa os 98%. Cerca de metade dos alunos iniciam a sua atividade profissional muito antes de terminarem o curso e conseguem um emprego em menos de dois meses.

Uma outra boa prática relatada são as “conversas com ex-alunos”, em curso desde 2014. Estas conversas visam divulgar casos de sucesso de ex-alunos do DEI, servindo de exemplos inspiradores para a comunidade DEI. Consiste na criação de um momento de conversa informal entre ex-alunos do DEI que tenham experiências profissionais interessantes e os atuais alunos dos cursos de Engenharia Informática e de Design e Multimédia. Permite dar a conhecer profissionais de sucesso formados pelo DEI, desde o seu início, constituindo uma oportunidade para os conhecer, falar com eles informalmente, tirar dúvidas, pedir conselhos, saber como e onde se encontram a trabalhar. Futuramente, pretende-se que estas conversas passem a ser transmitidas online e gravadas para mais tarde apresentar nas escolas, nomeadamente no âmbito do projeto-piloto “Clubes de Informática e Design”, integrado nas atividades da DEI Academy.

Mostra da Oferta Educativa e Formativa (Agrupamento de Escolas de Padre Benjamim Salgado)

No ano letivo de 2014/2015, ocorreu entre 14 e 27 de maio de 2015, a Mostra da Oferta Educativa e Formativa do Agrupamento de Escolas de Padre Benjamim Salgado
(AEPBS), da responsabilidade dos Diretores dos Cursos Profissionais e do Serviço de Psicologia e Orientação. Esta prática, já desenvolvida em anos letivos anteriores, visa dar a conhecer, ao público na área de influência do AEPBS, a sua oferta educativa e formativa, destacando-se as ofertas em áreas TICE. Dirige-se aos alunos do 9º ano do AEPBS e de outras escolas da sua área de influência, concretizando-se na mostra dos cursos aos alunos, que fazem um percurso predefinido pelos mesmos, divididos em pequenos grupos. Cada espaço é dinamizado pelos Diretores de Curso/ Coordenadores de Departamento, com a colaboração de docentes e alunos do respetivo curso, procurando-se dar a conhecer aos alunos as principais atividades desenvolvidas no curso e os meios tecnológicos e/ou outros que lhe estão associados. Todos os alunos do 9º ano do AEPBS participam nesta atividade, organizando-se horários específicos para estes visitarem a mostra, acompanhados de docentes. No caso dos alunos das outras escolas, participam os que se inscrevem, junto dos respetivos Serviços de Psicologia e Orientação. No ano letivo de 2014/2015 participaram na atividade cerca de 230 alunos do AEPBS e cerca de 170 alunos de outras escolas. Segundo a escola, considera-se que esta é uma atividade que contribui para o esclarecimento dos alunos acerca dos diversos percursos educativos e formativos, concorrendo significativamente para a mobilização de alunos para as áreas TICE.

Festival Nacional de Robótica (Escola Profissional de Espinho, Escola Profissional de Cortegaça e Externato Oliveira Martins)

O Festival Nacional de Robótica, organizado pela Escola Profissional de Espinho, Escola Profissional de Cortegaça e Externato Oliveira Martins, juntamente com a Sociedade Portuguesa de Robótica, decorreu entre 14 e 18 de Maio de 2014, foi um evento de dimensão nacional e internacional, com ampla cobertura nas redes sociais e nos media, nomeadamente televisões e rádios. O evento recebeu cerca de dez mil visitantes, maioritariamente jovens do ensino secundário. Participaram várias equipas e entidades internacionais, o que possibilitou a troca de experiências, conhecimento e contactos. O evento foi patrocinado por empresas de diversas áreas, entre as quais se destacam a Sonae, BPI, Solverde, Amorim, RTP, entre outros. Segundo os seus organizadores, os objetivos do evento foram atingidos, proporcionando aos alunos uma experiência única e às entidades organizadoras, uma maior promoção e projeção nacional e internacional. Para 2015/2016, a Escola Profissional de Espinho encontra-se a organizar uma competição no concelho que envolverá todas as escolas e a autarquia.

Relativamente à Escola Profissional de Cortegaça, esta experiência mobilizou todos os alunos do Curso Profissional de Técnico de Eletrónica e Telecomunicações da escola numa fase de preparação para a participação no Festival. Aquando da participação foram mobilizados recursos para que as equipas participantes pudessem ser apoiadas pelos colegas e professores da escola. O trabalho colaborativo foi muito importante e as aprendizagens que se fizeram durante todo o processo também. Segundo a escola, a participação em eventos desta natureza tem-se revelado muito positiva, pois funciona como um gerador de experiências diversificadas que contribui para a formação dos jovens a vários níveis. A motivação aumenta e os alunos dedicam-se mais à área de formação escolhida. Por outro lado, estabelecem pontes com outros colegas e atraem-nos para a área tecnológica. Numa perspetiva de continuidade, a escola tem proporcionado aos alunos a possibilidade de participar noutras competições ligadas à Robótica, como a RoboParty.
Mostra Tecnológica (Escola Profissional de Espinho, Escola Profissional de Cortegaça e Externato Oliveira Martins)

A Mostra Tecnológica ocorre anualmente desde 2013 e trata-se de uma ação que se concentra em 3 a 4 dias, e que serve para mostrar à comunidade “o que de melhor se faz em termos de desenvolvimento tecnológico nos cursos das escolas participantes do Grupo Oliveira Martins: Escola Profissional de Espinho, Externato Oliveira Martins e Escola Profissional de Cortegaça”. Os parceiros organizam um evento aberto à comunidade em geral, e ao público estudantil em particular, com o objetivo de contribuir para a sensibilização para as áreas tecnológicas e de dar a conhecer os projetos que os alunos vão desenvolvendo ao longo da sua formação nos cursos. O evento é organizado por áreas e são feitas demonstrações. Privilegia-se a vertente experimental e interativa da Mostra e o contacto com as áreas tecnológicas e com profissionais das referidas áreas de modo a despertar o interesse dos seus participantes e visitantes. Na primeira linha, abrange todos os alunos das escolas parceiras; em segundo lugar, abrange todos os alunos das escolas dos concelhos de proximidade do local de realização da Mostra Tecnológica; em terceiro lugar, abrange os encarregados de educação e o público, em geral, que podem visitar a Mostra. Trata-se de um evento muito abrangente e que tem vindo a crescer de ano para ano. Este evento tem permitido uma ampla divulgação da área das TICE e uma consequente sensibilização e orientação dos jovens que visitam o evento para estas áreas, sendo que é intenção dos parceiros dar continuidade ao trabalho que tem vindo a ser desenvolvido.

2.5. Jovens mulheres e as TICE: “Bytes are girls’ best friends”

Constatámos que as experiências e as práticas relatadas fazem uma referência residual ao público das jovens mulheres. Este é, no entanto, um segmento cuja atenção deve ser reforçada em todos os sectores, público, privado e terceiro sector. Dos relatos das 46 práticas/experiências das instituições participantes neste estudo, houve duas que, por via da organização de concursos de programação, fizeram menção expressa às “alunas”.

No âmbito do ensino básico, os alunos fazem diversas escolhas relativamente ao prosseguimento dos estudos e/ou da profissão que pretendem seguir no futuro. É portanto nesta fase que as iniciativas reportadas se situam, uma fase em que se pretende ajudar as alunas a explorar vocações e gostos pelas áreas das TICE. Consideramos que estas iniciativas podem ter os seguintes efeitos na melhoria da paridade de género nestas áreas: (1) ao nível do secundário, a potencial escolha de cursos de ensino vocacional na área das TICE ou escolha de uma área geral de cariz mais científico e tecnológico, facilitadora do prosseguimento de estudos e da opção de trabalho nestas áreas; (2) ao nível do secundário, a potencial escolha (quando a oferta de escola possibilita) de disciplinas mais tecnológicas (tais como Aplicações Informáticas B); (3) ao nível do ensino pós-secundário e superior (politécnico e universitário), a potencial escolha de um curso em TICE; (4) e, finalmente, a potencial escolha de atividades extracurriculares na área da informática/digital, que podem aproximar mais as raparigas destas áreas e expandir o seu leque de competências digitais.
No que respeita às experiências educativas relatadas, ambas são de natureza competitiva (concursos) e focadas num domínio “core” das TICE: programação. Uma das escolas referiu expressamente que os concursos de programação promovidos permitiram um aumento de candidatas e de alunas a integrar o curso profissional de técnico de gestão e programação de sistemas informáticos. Vejamos cada uma das experiências.

Concursos de programação

A Universidade Portucalense, no âmbito da organização de concursos de programação, menciona explicitamente a preocupação com o incremento do número de raparigas e mulheres nestas áreas. Neste sentido, no âmbito da 12ª edição do concurso de programação, para sensibilizar jovens entre os 12 e os 17 anos para as profissões na área das TICE, foi criado um concurso de programação exclusivo para raparigas/mulheres, de modo a incentivá-las para esta área e a fomentar a sua capacidade de resolução de problemas computacionais. Este evento teve a participação de 60 alunos e foi desenvolvido em parceria com várias empresas que contribuem com os prémios que são atribuídos às equipas vencedoras.

Ao nível do ensino profissional, o Agrupamento de Escolas Padre Benjamim Salgado tem promovido, desde 2010, concursos de programação, com especial atenção à sensibilização de alunas. Os principais objetivos subjacentes ao desenvolvimento desta prática passaram por: desenvolver competências específicas, na área da programação; desmistificar o grau de exigência associada à programação de computadores; motivar os alunos para a área da programação; sensibilizar a participação de alunas; atrair alunos para cursos na área das Ciências Informáticas. Estes concursos envolveram alunos do curso profissional de técnico de informática de gestão e, mais recentemente, do curso profissional de técnico de gestão e programação de sistemas informáticos. Segundo esta escola, o envolvimento dos alunos exige a sua adesão a uma fase inicial de preparação, especifica para a programação e direcionada para os concursos de programação, ao longo de um prazo relativamente alargado. O conjunto de alunos considerados preparados são depois inscritos em vários concursos promovidos sobretudo por instituições do ensino superior, designadamente: Universidade do Porto (ToPAS), Universidade de Aveiro (Tecla), Universidade Portucalense (PPUP) e Associação para a Promoção e desenvolvimento da Sociedade de Informação (Olimpíadas Nacionais de Informática - ONI).

De acordo com a escola, o facto de se começarem a atingir resultados muito positivos nestas competições (2 representações nas IOI, em 2013, na Austrália e, em 2014, em Taiwan; representações nacionais no Concurso Ibero-Americano de Informática por Correspondência; obtenção do 1.º lugar em todas as competições coletivas em 2015, com os correspondentes prémios para os primeiros classificados) facilitou a divulgação de cursos na área das Ciências Informáticas, sendo que, no ano letivo 2015/2016, o curso profissional de técnico de gestão e programação de sistemas informáticos foi um dos mais procurados no agrupamento. Em relação às alunas interessadas, verificou-se um aumento de candidatas e de alunas a integrar o curso profissional de técnico de gestão e programação de sistemas informáticos. A escola defende que a divulgação, e sobretudo o envolvimento dos alunos nestas iniciativas são imprescindíveis, para o “despertar de vocações”.

148
Caixa 18. Fundação Portuguesa das Comunicações junta-se à celebração do Dia das Jovens Mulheres nas TIC - 23 de Abril de 2015

No âmbito da celebração do Dia das Jovens Mulheres nas TIC, a Fundação Portuguesa das Comunicações (FPC), convidou as escolas a refletir sobre esta temática e lançou o desafio de fazermem projetos em formato digital. Os trabalhos dos 3 ciclos do ensino (básico, secundário e superior) foram posteriormente apresentados na página de facebook da FPC. (cf. http://www.fpc.pt/Portals/0/PDF%20Diversos/Diversos%202015/Desafio%20Girls15%20.pdf)

Quadro 10. Outras iniciativas no âmbito da literacia e inclusão digitais e da educação/formação e mobilização para as TICE, Portugal

<table>
<thead>
<tr>
<th>Instituição/Organização</th>
<th>Iniciativas</th>
<th>Objetivos/âmbito</th>
<th>Públicos-alvo/ Temas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundação para a Ciência e Tecnologia (FCT) – promotor e parceiro</td>
<td>Prémio Inclusão e Literacia Digital</td>
<td>Distingue e apoia projetos inovadores centrados na promoção e aquisição de competências digitais que contribuam para uma sociedade mais inclusiva. Tem o valor global de 500.000 € (instituído em 2014).</td>
<td>Inclusão Digital</td>
</tr>
<tr>
<td>Diploma de Competências Básicas em Tecnologias da Informação – DCBTI</td>
<td>Reconhecimento e certificação de competências digitais com o Diploma de Competências Básicas em Tecnologias da Informação – DCBTI</td>
<td>Inclusão Digital</td>
<td></td>
</tr>
<tr>
<td>Unidade Acesso</td>
<td>Faz parte da rede TIC&Sociedade. Promove a participação em sociedade das pessoas com deficiência por via do potencial das TIC (ex. reconhecimento de voz, sistemas de comunicação por símbolos, Línguagem fácil, Língua Gestual Portuguesa, Braille).</td>
<td>Inclusão Digital</td>
<td></td>
</tr>
<tr>
<td>UARPIE - Using Assistive Robots to Promote Inclusive Education</td>
<td>Resulta de uma parceria entre a Fundação PT, a FCT e as universidades portuguesas, para o período 2013-2015. Visa promover a inclusão digital através do desenvolvimento de sistemas integrados de comunicação e manipulação para promover a participação de crianças com deficiência em atividades académicas.</td>
<td>Inclusão Digital</td>
<td></td>
</tr>
<tr>
<td>E-skills for jobs. Grande Coligação para a Empregabilidade Digital</td>
<td>Campanha baseada na comunicação e sensibilização dos cidadãos para melhorarem as suas competências digitais em contexto de trabalho.</td>
<td>Sensibilização de públicos/ competências digitais em contexto de trabalho</td>
<td></td>
</tr>
<tr>
<td>Medalhas de Honra L’Oréal Portugal para as Mulheres na Ciência 2015</td>
<td>Resultam de um protocolo celebrado entre a Fundação para a Ciência e Tecnologia, a L’Oréal Portugal e a Comissão Nacional da UNESCO em novembro de 2003. Pretende-se reconhecer e incentivar o trabalho das mais promissoras jovens cientistas que desenvolvam a sua pesquisa em instituições portuguesas, com projetos originais no âmbito das ciências da saúde e do ambiente. Podem candidatar-se todas as investigadoras que tenham obtido o seu grau de doutoramento há menos de 5 anos até à data de abertura do concurso e que não ultrapassem, até essa mesma data, os 35 anos de idade.</td>
<td>Jovens mulheres cientistas</td>
<td></td>
</tr>
<tr>
<td>Direção-geral da Educação</td>
<td>BloguesEdu</td>
<td>O Catálogo de Blogues Educativos destina-se a todos os docentes que queiram publicar e divulgar o seu blogue revelando trabalho realizado com os alunos e promover boas práticas dentro da sala de aula.</td>
<td>Agentes educativos/alunos</td>
</tr>
<tr>
<td></td>
<td>Laboratórios de aprendizagem</td>
<td>Disseminação de metodologias para a integração curricular das TIC que foram validadas em pilotos de âmbito europeu (European Schoolnet)</td>
<td>Agentes educativos/alunos</td>
</tr>
<tr>
<td></td>
<td>Clubes de programação e robótica: mapeamento e apoios</td>
<td>Identificação dos vários clubes de programação e robótica existentes nas escolas públicas nacionais, tendo como objetivo apoiar esses mesmos clubes nas suas atividades.</td>
<td>Jovens e crianças em fase escolar</td>
</tr>
<tr>
<td></td>
<td>Vodafone Portugal (parceria com INOV-INESC, a Direção-Geral da Educação)</td>
<td>Mobile Lab</td>
<td>Portal de conteúdos multimédia que pretende explicar o funcionamento das comunicações móveis ao mesmo tempo que permite aos alunos do ensino secundário (10.º, 11.º e 12.º anos) consolidarem os seus conhecimentos de Jovens em fase escolar</td>
</tr>
<tr>
<td>Instituição/Organização</td>
<td>Iniciativas</td>
<td>Objetivos/âmbito</td>
<td>Públicos-alvo/ Temas</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>(DGE) e a Direção-Geral da Saúde</td>
<td></td>
<td>Matemática e Física.</td>
<td></td>
</tr>
<tr>
<td>Instituto de Educação da Universidade de Lisboa</td>
<td>TACCLE2</td>
<td>Apoio aos professores na criação de conteúdo para ambientes de aprendizagem.</td>
<td>Agentes educativos/alunos</td>
</tr>
<tr>
<td>Pólo das Tecnologias de Informação, Comunicação e Eletrónica - TICE.PT</td>
<td></td>
<td>Constituído em 2008, com sede em Aveiro, o TICE.PT envolve e mobiliza atores relevantes em todo o país e, em particular, nas regiões de Braga, Porto, Coimbra e Lisboa, abrangendo toda a cadeia de valor na área das TICE.</td>
<td>Empresas/ ensino superior e investigação em TICE</td>
</tr>
<tr>
<td>Agência Nacional para a Cultura Científica e Tecnológica</td>
<td>Semana C&T 2015</td>
<td>Este evento faz uma mostra dos melhores documentários científicos europeus e proporciona o debate com robôs inteligentes. Inclui a atribuição de prémios Ciência Viva 2015.</td>
<td>Ciência e Tecnologia</td>
</tr>
</tbody>
</table>
Conclusões e Recomendações

Descobrir e construir vocações…mais cedo, antes do secundário

A escolha de cursos e futuras carreiras em TICE depende em boa parte da capacidade de despertar motivações e de construir vocações ao longo do percurso escolar de crianças e jovens. Essa tem sido, como vimos, uma das grandes apostas de boa parte das iniciativas europeias ao propiciarem, desde os primeiros anos do ensino básico, experiências de aprendizagem e de descoberta das tecnologias digitais.

Nomeadamente os jovens que optam por cursos TICE, em vias profissionalizantes logo no ensino secundário, justificam essa opção pelo interesse e motivação que sentem “por tudo o que é tecnológico”, desde pequenos, embora referiram também a importância que o carácter prático destes cursos, mais orientados para o trabalho, teve na sua escolha. Ainda assim, a significativa importância das escolhas por indefinição, experimentação ou abrangência das áreas que os jovens fazem no ensino secundário revelam a possibilidade, ainda oportuna nesta fase, de motivar mais alunos para percursos de educação/formação em TICE.

É de notar que alguns, ainda que aparentemente poucos, não excluem essa hipótese, por vocação, e porque já decidiram, outros porque se “sentem fascinados” pelo mundo das tecnologias digitais. Por outro lado, a percepção já muito evidente, entre alunos de áreas muito diversas e com interesses distintos, de que as TIC e as competências digitais são cada vez mais necessárias para o estudo e para o trabalho nas suas áreas de preferência reforça a perspetiva de que o potencial de futuras motivações para aprendizagens mais estruturadas e utilizações mais sofisticadas destas tecnologias é considerável.

Motivar para…e melhorar os desempenhos na matemática, desde o 2º ciclo do ensino básico

Contudo, o peso das escolhas dos alunos por exclusão de disciplinas que não gostam, em que têm baixos desempenhos, ou nas quais as expectativas de sucesso futuro são muito reduzidas, nomeadamente a matemática e a físico-química, condicionam em larga medida a opção pelo prosseguimento de estudos em TICE. São vários os alunos que expressam as dificuldades que têm a matemática e a necessidade de esforço adicional, sobretudo quando esta é uma disciplina fundamental no curso que escolheram no secundário e para o acesso ao ensino superior na área que pretendem. Os jovens que optam por cursos profissionalizantes em TICE, no ensino secundário, mencionam as exigências de disciplinas como a matemática – que consideram ser menores face às do ensino geral – mas também o facto, mais atrativo do seu ponto de vista, de “perceberem para que serve”, porque a aplicam, de uma forma mais imediata e perceptível nas componentes de formação tecnológica e prática destes cursos. Contudo, reconhecem as dificuldades de ingresso no ensino superior devido à exigência dos exames de acesso nesta disciplina (ou em físico-química), para os quais se sentem menos preparados.

Com efeito, são vários os indicadores que mostram desempenhos insuficientes dos alunos na matemática. No PISA de 2012, cerca de 25% dos jovens em Portugal, no ensino secundário, não chegava a ter um nível de competências em matemática
considerado suficiente. Também os resultados das provas finais do ensino básico (3º ciclo) e dos exames nacionais do ensino secundário a matemática revelam médias baixas, alguns casos negativas, à semelhança dos resultados dos exames do ensino secundário na disciplina de Física e Química A que, em 2015, continuam a registar valores muito baixos. É importante ter em conta que grande parte dos cursos de licenciatura e mestrado integrado em TICE exigem como provas de ingresso a Matemática A e a Física e Química A.

Sublinha-se, no entanto, que estas dificuldades têm um caráter mais estrutural, evidenciando-se nas aprendizagens em ciclos anteriores, nomeadamente desde o 2º ciclo, e acumulando-se ao longo da trajetória escolar dos alunos. Segundo a opinião dos professores e psicólogos entrevistados, importaria repensar o modo como se ensina a matemática desde o 2º ciclo do ensino básico. A motivação para a aprendizagem da matemática é determinante e constitui uma preocupação comum ao nível das políticas de educação e formação de vários Estados-membros da UE, nomeadamente em Portugal. A qualidade do ensino, a revisão dos currículos, a adoção de métodos pedagógicos que promovem aprendizagens baseadas em resultados e a aplicação da matemática a situações concretas assumem um papel importante na motivação dos alunos e na melhoria do desempenho educativo.

Reforçar a aprendizagem/ aplicação das TIC e o ensino da informática/ programação nas escolas, de forma contínua

O ensino das TIC está integrado no 3º ciclo do ensino básico, funcionando sequencialmente nos 7.º e 8.º anos, semestral ou anualmente, em articulação com uma disciplina criada pela escola, designada por oferta de escola. O ensino das TIC volta a fazer parte do currículo escolar, no ensino secundário geral, com a disciplina Aplicações Informáticas B, opcional no 12º ano. Ainda assim, nem sempre essa opção faz parte da oferta da escola, ou mesmo quando faz, poderá não estar disponível para os alunos do 12º ano de escolaridade de todos os cursos.

Com efeito, apesar do ensino das TIC estar integrado nos currículos do ensino básico e secundário em Portugal, enquanto disciplina, as condicionantes desta oferta – a carga letiva que lhe é atribuída no ensino básico, limitada e aparentemente variável, o seu carácter opcional no 12º ano de escolaridade, as opções de organização das escolas e a disponibilidade de recursos para o efeito - podem limitar quer a motivação para, quer a progressão das aprendizagens dos alunos. Como foi amplamente referido pelos professores de TIC/ Informática que entrevistámos, o gap ou o carácter descontinuado da oferta desta disciplina, ao longo dos vários ciclos de ensino, constituem um importante fator de inibição das escolhas dos alunos, e de futuro prosseguimento de estudos nestas áreas, para além de limitar o desenvolvimento de competências digitais em domínios mais exigentes, como seja, por exemplo, o da programação.

Outra questão importante é a forma como a própria formação em TIC é integrada, ou não, na formação de base das crianças e jovens e como as tecnologias têm vindo a suportar abordagens pedagógicas inovadoras. Reconhece-se, de uma forma geral, que as TIC aplicadas ao ensino de uma forma transversal às disciplinas, ou o desenvolvimento das competências digitais em disciplinas de matemática, ciências e línguas podem ter um enorme potencial na motivação dos jovens e na qualidade das aprendizagens. No entanto, de acordo com vários estudos a nível europeu, a integração das TIC nos
processos de ensino-aprendizagem e a utilização que os professores fazem dos
computadores em sala de aula, apesar de crescente, carecem ainda de maior
desenvolvimento. Quer o nível de confiança dos professores no uso das TIC, quer a
formação contínua de professores nestes domínios são decisivos para tirar partido dos
recursos tecnológicos que estão hoje, cada vez mais, disponíveis nas escolas.

Por outro lado, como vimos, têm sido várias as experiências de explorar a programação
ao longo do percurso escolar de crianças e jovens a nível europeu e também em
Portugal. De uma forma geral, o ensino da programação nas escolas visa essencialmente
desenvolver as capacidades de pensamento lógico e de resolução de problemas,
fundamentais à aprendizagem de outras disciplinas, mas também procura atrair mais
alunos para as ciências informáticas, desmitificando a dificuldade destas formações.

Em Portugal, entre outras iniciativas, destacam-se igualmente a revisão do currículo da
disciplina de TIC no 3º ciclo do ensino básico que introduziu, no 8º ano de escolaridade,
a exploração de ambientes computacionais apropriados à idade dos alunos e o programa
da disciplina de Aplicações Informáticas B, no 12º ano de escolaridade, que prevê, na
unidade 1, a introdução à programação. Refira-se, ainda, a importância do ensino da
lógica no secundário, nomeadamente como forma de dar aos alunos uma maior
preparação para o prosseguimento de estudos nas áreas das TICE e, em particular, da
programação. Neste sentido, o novo programa e metas curriculares da Matemática A do
ensino secundário, veio explicitar a constituição do domínio Lógica e Teoria dos
Conjuntos no 10.º ano.

Naturalmente que os professores destas disciplinas assumem um papel importante na
qualidade do ensino e da aprendizagem e na motivação dos alunos, através da maneira
como as aulas são dadas, dos métodos de estudo e da exploração dos conteúdos,
podendo influenciar o modo como os alunos encaram estas disciplinas e informando,
orientando ou inspirando as suas escolhas futuras.

Desenvolver as competências digitais dos jovens

O quotidiano desta geração está intimamente ligado ao uso das TIC. Fazem-no diáriamente
intensivamente e usam-nas essencialmente para práticas lúdicas e de comunicação. A
utilização destas tecnologias para estudar, fazer trabalhos para a escola, pesquisar
informação, aprender outras coisas que se interessam é também comum, embora pareça
ser menos frequente.

Ainda assim, é de destacar alguns exemplos que sugerem uma utilização mais
diferenciada das TIC, ou porque têm interesse e “aprenderam sozinhos” e em contextos
informais, com colegas, amigos ou familiares, ou porque a frequência de cursos na área
lhes permite uma maior exploração desses recursos. Referem-se a atividades vários,
como desenho e animação digital, criação e gestão de websites, criação de jogos,
programação, montagem e reparação de hardware, instalação e configuração de
softwares… atividades para as quais, de uma forma geral, parecem ter uma motivação
adicional e que lhes suscitam curiosidade, interesse em explorar e vontade de aprender.

A maioria dos jovens reconhece, no entanto, que as suas competências em TIC são
limitadas, apesar da familiaridade que têm com estas tecnologias e do seu uso intenso.
De acordo com os dados do Eurostat (2014), 56% dos jovens dos 16 aos 19 anos em
Portugal consideram ter um nível de competências baixo/médio no uso da internet e apenas 22% indica que sabe “escrever um programa de computador usando uma linguagem de programação especializada”.

Apesar de todos os jovens no ensino secundário que entrevistámos terem tido a disciplina de TIC, nalguns dos anos do 3º ciclo do ensino básico, uma boa parte mostra alguma dificuldade em concretizar as aprendizagens realizadas. Referem-se à de softwares do office, necessários inclusivamente para a realização de trabalhos para a escola, mas com uma exploração limitada. Reconhecem, de uma forma geral, que o tempo letivo dedicado, por semana, à disciplina é muito limitado, o que não terá permitido um maior domínio destes softwares nem a exploração de outras ferramentas.

No ensino secundário geral, a disciplina de Aplicações Informáticas B, opcional no 12º ano, já com uma componente de iniciação à programação, pode corresponder às expectativas dos jovens com maior interesse nestas aprendizagens. Ela é também encarada como uma disciplina mais prática e, por isso, mais apelativa mas também pela aparente facilidade em tirar melhores notas, comparativamente a outras opções disponíveis no ensino secundário, e desse modo constituir uma opção interestante para aqueles que procuram melhorar ou garantir a média final do ensino secundário.

As motivações para a escolha de cursos em TICE, especialmente os da área das ciências informáticas, inclui, para uma larga maioria dos jovens entrevistados, o gosto explícito pela programação. São, no entanto, muitos os alunos que reconhecem que não têm bases suficientes em programação embora gostem e queiram aprender mais. As dificuldades no desempenho em módulos/ disciplinas de programação são comuns e em parte justificadas pelo seu pouco contacto prévio com estes conteúdos e pelas dificuldades na matemática.

Apoiar e orientar as transições de ciclo mais cedo... e até ao pós-secundário

A generalidade dos alunos entrevistados teve acessos aos serviços de orientação e psicologia das escolas, sobretudo na transição do 9º ano para o 10º ano, quando é necessário fazer opções quanto à escolha das vias de ensino no secundário e dos cursos. Nalguns casos, terá sido importante para consolidar expectativas e preferências, noutros para despistar interesses e indecisões entre mais do que uma área/ curso ou vias de ensino, noutros casos, porém, não terá ajudado significativamente – ou por serem demasiados generalistas, do tipo “várias áreas possíveis”, ou por serem até descoincidentes com o que gostavam ou já sabiam que queriam seguir.

Seria importante consolidar este apoio e orientação ao longo das várias transições de ciclo, incluindo, depois do secundário, o acesso ao ensino superior ou a transição para o mercado de trabalho. O apoio especializado de psicólogos de orientação vocacional é fundamental na descoberta e construção de vocações, sobretudo quando em estreita ligação com os alunos, as famílias e os professores.

A orientação vocacional nas escolas assume também um papel decisivo na motivação dos jovens para as áreas das TICE. Nomeadamente, a não atratividade das áreas TICE, quer enquanto percurso académico, quer de trabalho, é justificada pelo gosto ou vocação por outras áreas, já definidas, mas também pela falta de informação – porque não lhes terá despertado a atenção – mesmo entre os jovens que ainda estão indecisos.
Promover a informação sobre profissões e perspetivas de emprego

Os argumentos da elevada empregabilidade na área parecem ainda não ter chegado às famílias, sobretudo em momentos decisivos da escolha do percurso escolar dos seus educandos, embora estas sejam cada vez mais sensíveis à questão da empregabilidade pós-curso. Regista-se a necessidade de maior informação e sensibilização destes técnicos para as carreiras em TICE, e suas profissões, nomeadamente a necessidade de disporem de referenciais mais.

Da parte dos jovens, o acesso a informação sobre cursos e profissões faz-se sobretudo pela pesquisa na internet, nomeadamente nos websites das próprias escolas e instituições de ensino superior. É também frequente o recurso a outros mecanismos de informação institucional promovidos pelas próprias instituições de ensino e formação.

Contudo, a informação institucional disponível parece ser muito mais centrada na oferta de educação e formação, do que no mercado de trabalho, nas profissões, carreiras e perspetivas de empregabilidade e mais focada nos recursos e capacidades das instituições de ensino e formação do que na mobilização de outros atores importantes - como, por exemplo, ex-alunos com experiências de trabalho interessantes e carreiras bem-sucedidas, empresários da região ou em setores de maior empregabilidade, profissionais de referência nas áreas de formação dos alunos - que poderiam suscitar nos jovens uma motivação adicional ou uma melhor perceção do que é trabalhar nessas áreas.

Ir ter com os pais: o argumento da empregabilidade é importante!

Apesar da aparente liberdade de escolha dada pelos pais, estes são particularmente atentos à necessidade de optar por uma área “com futuro” o que “dê mais saídas profissionais”. A influência dos pais faz-se notar também pelas suas próprias profissões ou vocações e, desse modo, é condicionada por expetativas ou pelo conhecimento que têm das realidades profissionais.

Geralmente, a perceção das perspetivas de empregabilidade, diferenciadas por áreas/cursos, é difusa e pouco informada relativamente às áreas das TICE. Já os pais que trabalham, estudaram ou são curiosos nas TICE assumem uma significativa influência na escolha destes cursos pelos filhos e parecem também proporcionar um ambiente, próximo e informal, de exploração destas tecnologias e de aprendizagem contínua.

Há normalmente expetativas de progressão para o ensino superior sendo que a opção pela via de ensino profissional no ensino secundário ainda é estigmatizada, embora ela também permita o prosseguimento de estudos para o ensino superior.

“Role models” de proximidade: entre irmãos e amigos bem-sucedidos

Os irmãos mais velhos surgem também com uma forte influência. O facto de terem irmãos que já fizeram o mesmo curso, ou outro semelhante, e terem sido bem-sucedidos no mercado de trabalho constitui uma referência importante para muitos destes jovens. Por outro lado, irmãos com gosto, vocação e curiosidade pelas TICE parecem também
proporcionar uma motivação adicional para que alguns destes jovens optassem por um percurso de educação e formação em TICE.

As influências de proximidade alargam-se aos colegas e amigos e são fatores importantes nas opções dos jovens, inclusivamente no seu sentido de pertença e identidade. Esta influência sente-se, nalguns casos, não apenas na decisão sobre o curso, como também na escolha da instituição de ensino e formação.

Melhorar as perceções sobre o que é estudar TICE

Para além da existência ou não de motivações para o prosseguimento de estudos em TICE, outro fator condicionante dessa opção é a forma como estes cursos são percecionados pelos jovens. Referem, com muita frequência, que é preciso “talento” para estas áreas, um talento específico, um gosto ou uma vocação já definida. Associam estes cursos à ideia de “programação”, uma atividade que geralmente lhes parece ser “complicada”, “trabalhosa”, que exige “grande concentração”, “estar o dia todo no computador” e, de certa forma, “aborrecida”.

Aparentemente para uma geração rodeada de tecnologias digitais e que as usa de forma tão intensiva e familiar no seu quotidiano, há uma clara diferença entre usar e gostar de usar estas tecnologias e gostar ou querer trabalhar com estas tecnologias. Usar é “lazer” e é “fácil” mas fazer é “trabalho” e é “complicado”. Ou seja, na percepção destes jovens, o que separa o seu “quidiano digital” de um quotidiano de estudo e trabalho em ciências informáticas parece ser um longo e exigente caminho, para o qual, como referem, “teríamos que ter paixão por isto para sermos profissionais”.

Valorizam, no entanto, o potencial de exploração destas tecnologias, em áreas diversas, a criatividade no seu uso e aplicação, a vontade ou o desafio de aprender a programar, sobretudo como ferramenta de trabalho, e sentem-se inspirados por figuras de referência na área das novas tecnologias.

Ser geek está na moda?! Restyling do estereótipo

Ser considerado um *geek* ou um *nerd* da informática pelos seus pares pode ser um atributo depreciativo - habitualmente conotados como pessoas peculiares ou excêntricas, na medida em que são diferentes dos seus pares, mais introvertidos e isolados, porque passam demasiado tempo com computadores, atraídos por tudo o que são novidades tecnológicas e focados em assuntos demasiado intelectuais e complexos, para aquilo que é habitual entre os jovens da sua idade —, estes são estereótipos que podem tornar menos apelativa a escolha de um curso nestas áreas.

Embora muitos dos jovens que entrevistámos reconheçam o estereótipo *geeks*, tendem a desvaloriza-lo porque o consideram ultrapassado. Desvalorizam, nomeadamente, o isolamento e o comportamento pouco sociável que lhe está associado e apreciam o conhecimento, as capacidades e o interesse extraordinários, ou pouco comuns, que esses jovens têm nessas áreas. Alguns consideram que serem “chamados *geeks*” é um elogio, significa que “somos bons naquilo que fazemos”.

“**Mas é só programar?**” *Dar a conhecer as multiskills/ várias profissões necessárias no sector*
A generalidade dos jovens que entrevistámos, em especial os que estão no ensino secundário geral, têm uma percepção restrita e pouco informada sobre as profissões nestas áreas.

A profissão de programador é aquela a que normalmente se referem quando se discute este tema. Trabalhar em TICE é trabalhar em programação e isso significa geralmente “estar isolado” e “passar os dias ao computador”, uma percepção encarada como pouco interessante ou pouco apelativa. Remete para estereótipos de isolamento - estão mais focados na tecnologia do que nas pessoas -, apesar de ligados ao mundo digital, e para atividades de excessiva tecnicidade, que são normalmente difíceis e que exigem concentração. Quanto a outras atividades e profissões, direta ou indiretamente relacionadas com as TICE, as percepções são geralmente difusas e pouco esclarecidas.

No entanto, para alguns, a ideia de um trabalho isolado e demasiado focado em “resolver problemas técnicos” já está ultrapassada. Valorizam a possibilidade, ou a necessidade, de trabalhar por projetos, o que é encarado como um desafio, pela adaptação constante e pelo multitasking que lhes é exigido. Referem-se à necessidade de trabalhar em equipas, nomeadamente em equipas multidisciplinares, à abrangência do próprio trabalho e ao crescente recurso à criatividade, aspetos que consideram indispensáveis num sector muito competitivo e em que a inovação “marca a diferença”. Por isso, trabalhar nestas áreas obriga a constante atualização. Encaram a sua própria competitividade no mercado de trabalho em função da sua capacidade de se manterem atualizados e da necessidade de estarem continuamente a aprender.

A ideia de mobilidade, “trabalhar em várias coisas” e “em qualquer lado”, que está já bem presente para alguns dos jovens entrevistados, é um dos aspetos mais interessantes de trabalhar em TICE. A transversalidade destas tecnologias e o carácter globalizado do mundo e das linguagens digitais constituem, de facto, um imenso potencial de mobilidade profissional e geográfica. Num momento em que os jovens se defrontam com grandes dificuldades de inserção no mercado de trabalho, as oportunidades de emprego em TICE caracterizadas também por esta abrangência e mobilidade podem ser um importante incentivo para que muitos outros jovens se interessem por estas áreas.

É uma área de futuro... com empregabilidade

A noção da empregabilidade elevada na área é bem evidente entre os jovens que estão em cursos TICE. Alguns destes alunos revelam alguma informação sobre a procura elevada de recursos humanos, referindo exemplos concretos de anúncios de emprego, do número de vagas por preencher, nomeadamente por falta de programadores, e casos de amigos ou familiares que, tendo esta formação, têm sido bem-sucedidos no mercado de trabalho; outros referem-se, de uma forma mais geral, à inevitabilidade e à transversalidade da tecnologia no mundo atual e no futuro “a tecnologia está em todo o lado...é uma área de futuro”.

Consideram que “é mais fácil arranjar emprego” nestas áreas, nomeadamente quando comparada com outras, mas também destacam as expectativas de carreira. Imaginam-se a trabalhar em grandes empresas e em marcas de referência do sector e em áreas da sua preferência e formação. Valorizam as perspetivas de carreira, as oportunidades de formação contínua e a atratividade dos salários que poderão ter nessas empresas.
São vários os jovens que referem a possibilidade de trabalharem fora do país, por gosto e determinação, ou porque acham que, nas suas áreas de interesse, as perspetivas de trabalho em Portugal serão menores e menos atrativas. Consideram que trabalhando nestas áreas “pode ser bem pago”, até por comparação a outras áreas onde as oportunidades de emprego são menores, mas têm a noção de que “ganhar bem” dependerá do emprego que conseguirem, da empresa onde trabalharem, ou das perspetivas de carreira que tiverem. De uma forma geral, acham que “lá fora podem ganhar melhor”.

É, contudo, interessante notar a valorização que alguns atribuem a outros aspetos, para além do salário, nomeadamente o de conciliação entre família ou vida pessoal e trabalho, ou o de poder trabalhar por conta própria, com mais “liberdade”, ainda que admitindo ganhos menores ou mais instáveis. Ainda assim, a grande maioria dos jovens entrevistados não parece equacionar, pelo menos para início de carreira, a possibilidade de criar o seu próprio negócio. Essa hipótese é geralmente considerada como possível e interessante mas remetida para depois de ganhar experiência.

Jovens e adultos em cursos de requalificação para as TICE

Promover o multiskilling digital

Naturalmente que melhorar as perspetivas de empregabilidade, quando em situação de desemprego, é um dos principais objetivos destes formandos e uma das principais razões da frequência destes cursos. A noção de que as perspetivas de emprego são boas nestas áreas e de que há uma elevada procura de programadores é geralmente comum.

Mas esta noção alarga-se à ideia de que o mercado, mesmo noutras áreas de trabalho, requer cada vez mais competências nestes domínios, de uma forma complementar aquelas que são as suas competências de origem. Remete para a necessidade de multiskilling, em que o domínio de algumas tecnologias digitais ou de competências básicas de programação é valorizado pelos empregadores. Estes cursos surgem assim, também deste ponto de vista, como uma oportunidade para se tornarem mais competitivos nas suas áreas de trabalho, algumas já muito saturadas. É também desta forma que alguns encaram inclusivamente a hipótese de desenvolvimento dos seus próprios projetos de empreendedorismo.

Explorar a multidisciplinaridade com áreas não-TICE ou relacionadas

A heterogeneidade da composição destes grupos é geralmente considerável, em áreas de formação de origem e experiências de trabalho e até em expetativas e interesses, muito diferenciados.

A similitude das áreas de educação de origem e das próprias trajetórias de formação suscita, nalguns casos, uma maior motivação para explorarem, agora com mais enfoque, a programação. Outros já trabalharam inclusivamente em programação, mas entendem que este tipo de cursos pode proporcionar-lhes uma maior consolidação desses conhecimentos ou uma exploração de novas linguagens de programação.
Porém, a grande maioria destes formandos provem de licenciaturas não-TICE e das mais diversas áreas - gestão, educação, psicologia, marketing, artes, música, arquitetura, engenharia civil… Para estes, a oportunidade de frequentarem um curso desta natureza não é tanto encarada como uma requalificação para as áreas das TICE, ou em particular para a programação, mas é sobretudo uma oportunidade de acrescentarem àquela que é a sua formação de base, uma nova ferramenta de trabalho. Uma ferramenta que pode ser um complemento muito útil para o trabalho nas suas áreas de formação e uma mais-valia importante do ponto de vista da empregabilidade.

Outros encaram esta experiência sobretudo como uma oportunidade de desenvolvimento pessoal, independentemente das suas perspetivas de emprego ou de uma futura utilização ou não desses conhecimentos no mercado de trabalho. Há também aqueles que dificilmente se imaginam a fazer da programação o seu trabalho principal. Reconhecem que são competências importantes, mas sempre na perspetiva de complemento às suas áreas de origem. No entanto, parecem-lhes exigir um tal afastamento daquilo que gostam, do que aprenderam e do que gostariam de continuar a fazer, que não concebem a possibilidade de se dedicarem à programação como atividade profissional.

Processos de seleção mais condicionados e cursos com níveis de exigência diferenciados

Mais uma vez, a aprendizagem da programação, ainda que em formato de curso intenso e curto, é encarada como um desafio, e um desafio difícil, sobretudo porque a maioria dos formandos vem de áreas pouco ou nada relacionadas com estes domínios. São os próprios formandos que reconhecem que, com “pontos de partida” tão diferentes, os ritmos e a qualidade das aprendizagens são desiguais e certamente que também o uso futuro que delas farão.

Neste sentido, processos de seleção para estes cursos mais condicionados, nomeadamente procurando uma maior nivelação de conhecimentos no mesmo grupo ou admitindo a constituição de vários grupos em diferentes níveis de conhecimento, poderia ser uma solução preferível.

Cursos curtos, intensivos e práticos

Encaram, em geral, a oportunidade de fazer este tipo de cursos com interesse, nomeadamente porque são curtos, intensivos, práticos e dão as bases para a iniciação da programação, embora alguns considerem que “é preciso aprofundar se quisermos trabalhar na área”. Por outro lado, valorizam muito a possibilidade de os fazerem sem terem de os pagar. De outra forma, muito provavelmente não teriam tido acesso a estas formações que, apesar de cada vez mais estarem disponíveis no mercado, são pagas pelos formandos e a preços elevados.

Jovens mulheres e as TICE

O número de mulheres que escolhe estudar e trabalhar em TICE continua a ser muito reduzido, apesar da evolução muito positiva, e acima da registada pelos homens, da participação das mulheres no ensino superior e no número de diplomados.
Nomeadamente em algumas das ciências que compõem as formações em CTEM, as mulheres estão tão ou mais bem representadas do que os homens. Contudo, o número de alunas inscritas em cursos de Ciências Informáticas não chegava a 20% do total de inscritos nestes cursos em 2014/15 e tem vindo a reduzir-se ao longo dos últimos dez anos.

Uma boa parte do debate académico nesta área procura, sobretudo, compreender os fatores que dissuadem as raparigas, em particular, de estudar e trabalhar em TICE. Na perspetiva dos jovens que ouvimos - rapazes e raparigas – importa aqui destacar o que justifica este enviesamento de género que caracteriza o sector.

Desconstruir os estereótipos de género nas TICE

De facto, são relativamente comuns, expressões como – “os rapazes gostam mais do que as raparigas de tudo o que é tecnológico” – muitas vezes, entendidas como “naturais”, mas também já amplamente reconhecidas, entre os jovens, como sendo um “preconceito” ou um “estereótipo” socialmente construído, face ao qual cada vez mais se questionam e se distanciam.

Ainda assim, esses estereótipos de género em TICE podem ter um efeito de segregação significativo, não apenas ao longo do percurso escolar como também no trabalho e na progressão de carreira. São, aliás, vários os estudos que o indicam. Alguns alunos e professores entrevistados mencionam precisamente que o facto de algumas raparigas não escolherem estas áreas se deve, em parte, à sua forte associação masculina – “sentem-se deslocadas”, pouco compreendidas ou apoiadas por colegas e professores nas suas opções, e mais facilmente desistem, ou se desviam desses percursos.

Já as raparigas que estão em cursos TICE são determinadas em afirmar que estes estereótipos têm que mudar – “quando se gosta disto, gosta-se” e “são tão capazes ou melhores do que os homens nestas áreas”, apesar de serem poucas e de serem vistas habitualmente pelos colegas como “menos boas” naquilo que lhes é exigido. Deste ponto de vista, são exemplos interessantes que podem servir também de incentivo a que mais raparigas não venham a desistir destas áreas, por razões que nada têm a ver com as suas vocações ou interesses.

Proporcionar competências e práticas de utilização das TIC diversificadas

Também as práticas de utilização das TIC, em contextos informais, parecem contribuir para o facto de as raparigas escolherem menos o que poderemos chamar das “hard TICE”. Embora o quotidiano intensamente digital dos jovens não seja substancialmente diferente entre géneros, a utilização que rapazes e raparigas fazem dessas tecnologias parece indicar alguma diferenciação.

A percentagem de mulheres jovens (16 a 19 e 20 a 24 anos) que utiliza diariamente internet e computador em Portugal é, de acordo com os dados do Eurostat para 2014, ligeiramente inferior à dos homens. As raparigas indicam níveis de competências no uso de computador e de internet inferiores aos dos rapazes, ou subavalam as competências que têm. Por outro lado, revelam uma maior utilização das redes sociais e da partilha de conteúdos em websites enquanto os rapazes, um maior recurso à internet para fazer o download de software e jogar jogos em rede. Aliás, o facto de os rapazes gostaram mais
de *gaming* em ambientes tecnológicos e digitais e fazerem-no de forma intensiva, desde pequenos, mas do que as raparigas, foi persistentemente referido pelos entrevistados neste estudo e apontado, na perspetiva destes jovens, como um dos fatores que mais motiva os rapazes a escolherem estas áreas para estudar e trabalhar.

As “digital divas”: a importância das competências das mulheres

Por outro lado, o que parece ser evidente é que a não escolha de formações em TICE pelas raparigas não é um problema de sucesso educativo, mas prende-se sobretudo com preferências por outras áreas. As raparigas tendem a ter percurso educativos mais longos e a preferir vias e modalidades de ensino orientadas para o prosseguimento de estudos no ensino superior, o que limita a escolha de cursos profissionais ou de CET e TeSP vocacionados para as TICE, cursos que têm uma forte orientação prática e para a inserção no mercado de trabalho. No entanto, se observarmos, em particular, os cursos superiores em Audiovisuais e produção dos media, a proporção de mulheres é muito mais equiparada à dos homens.

De facto, como foi amplamente referido neste estudo, as raparigas são normalmente mais interessadas em atividades que requerem criatividade e sentido estético, produção e partilha de conteúdos em ambientes multimédia e mais atentas a aspetos de comunicação, imagem e interatividade com o utilizador, para os quais as ferramentas digitais são aplicações cada vez mais indispensáveis. Deste ponto de vista, é importante ter em conta o potencial de competências e capacidades distintas e complementares que as mulheres podem trazer ao sector.

Mais algumas recomendações dirigidas e segmentadas

A partir das inúmeras práticas e experiências, implementadas a nível europeu e em Portugal, que identificámos no âmbito deste estudo, demos destaque ao modo como as instituições de ensino e de formação têm desenvolvido iniciativas para captar e formar jovens nas TICE e às estratégias que têm sido desenvolvidas ao nível da comunicação, sensibilização e orientação para estas áreas.

Este elenco diversificado de iniciativas permite também equacionar um conjunto de recomendações adicionais que, a partir da informação empírica recolhida neste estudo, nos parecem pertinentes. Procuramos concretizá-las tendo em conta os três segmentos da análise: os jovens e as suas escolhas; a mobilização das raparigas e mulheres para as TICE; a requalificação de jovens e adultos desempregados.

Jovens no ensino básico e secundário: captação de públicos formativos em potência

- Promover a formação em TIC de forma mais continuada ao longo do percurso escolar e integrada com as restantes disciplinas do plano curricular. Integrar as aulas de TIC no 2ºciclo do ensino básico e expandir a oferta das disciplinas tecnológicas no ensino secundário a todas as áreas científico-humanísticas (e.g. aplicações informáticas; oficina de multimédia).
- Diversificar a formação em TIC, incluindo a aprendizagem da programação, mas também de outras áreas, de modo a ampliar a versatilidade dos saberes. Os conteúdos de audiovisual e multimédia são atrativos.
Promover a componente prática da formação em TIC associada ao quotidiano juvenil. Os jogos e os brinquedos são uma via apelativa, sobretudo no ensino básico, para perceber conteúdos mais “hard” (programação, eletrónica, robótica…).

Criar simbiose entre aprendizagens técnicas, responsabilidade social e inclusão digital. Projetar a tecnologia como um recurso para resolver problemas na sociedade e o seu uso responsável no dia-a-dia. O projeto *Apps for Good* e o projeto *Shift & Play* são exemplos a replicar.

Expandir os clubes de informática nas escolas. Neste âmbito, o projeto *Coder Dojo* é um exemplo.

Promover iniciativas tais como “visitas de estudo virtuais”, a partir da sala de aula, e “visitas de estudo científicas e tecnológicas”.

Promover projetos-escola com enfoque na área das TIC, seja como objeto central do projeto, seja como ferramenta.

Promover concursos e prémios apelativos para projetos onde o recurso às TIC é um requisito fundamental.

Participação dos alunos em mostras tecnológicas nas próprias escolas e noutras outras escolas da região.

Promover mostras de profissões e mostras formativas com um carácter mais prolongado, regular e prático. Enfoque destas mostras nas áreas TICE.

Envolver os pais e encarregados de educação em algumas iniciativas.

Desenvolver estratégias que permitam ampliar as competências digitais e tecnológicas dos professores. Continuar a promover redes e partilha de boas práticas, plataformas tecnológicas e recursos pedagógicos digitais de apoio às salas de aula.

Jovens em ensino secundário profissional e pós-secundário em TICE: preparação de profissionais TICE em potência

Garantir fileiras de progressão académica entre a oferta formativa pós-secundária (CET e TeSP) e os cursos do ensino superior nas áreas TICE.

Promover a formação em contexto de trabalho através de estágios e do desenvolvimento de projetos em contexto empresarial, ao nível nacional e internacional.

Possibilitar que os alunos das áreas tecnológicas possam desenvolver e aplicar competências empreendedoras, projetando as suas ideias a partir, por exemplo, de incubadoras.

Criação de redes de proximidade com empresas líderes na área das TICE. Por exemplo, os alunos terem a possibilidade de terem um mentor de uma empresa que acompanha regularmente o seu projeto académico.

Promover cursos/workshops de curta-duração, atividades extracurriculares, “low-cost” e certificadas.

Desenvolvimento de modelos de formação em registo de e-learning.

Promover concursos e prémios. Iniciativas tais como o Festival Nacional de Robótica são exemplos a replicar.

Jovens e adultos à procura de emprego: requalificação de competências TICE em potência
– Desenvolver uma orientação personalizada e adequada ao perfil dos candidatos e às ações de formação.
– Diversificar as ofertas formativas nas áreas das TICE, quer em termos de programas, quer em termos de níveis de dificuldade.
– Expandir os modelos de formação em regime e-learning e noutras plataformas.
– Incorporar, sempre que possível, um período de formação on job para facilitar a transição para o mercado de trabalho.
– Promover a versatilidade das competências tecnológicas e digitais em articulação com as formações de origem.
– Desenvolver competências empreendedoras aliadas às competências técnicas.
– Promover linhas de financiamento para projetos de curso inovadores.
– Motivar e diversificar as parcerias para o desenvolvimento deste tipo de ações, nomeadamente entre serviço público de emprego, instituições de ensino e formação, associações setoriais e profissionais e empresas de referência na área das TICE.

Jovens mulheres e as TICE: o “upgrade” necessário na paridade de género

– Motivar as raparigas para clubes de informática e atividades extracurriculares de informática e multimédia ou áreas afins.
– Promover concursos de programação (e outros!) especificamente para raparigas.
– Fazer do tema das “E-Girls/SmartGirls” um trabalho para uma disciplina, um projeto para a escola ou uma iniciativa em colaboração com as associações de estudantes.
– Desconstruir o jargão tecnológico. Utilizar uma linguagem irreverente, acessível e apelativa a diversos públicos em estratégias de comunicação e mobilização.
– Realizar eventos onde se promovam “role models”, através de embaixadoras… alunas do ensino superior em TICE ou profissionais - técnicas, gestoras ou empreendedoras - destas áreas.
– Criar um conjunto de estratégias de comunicação que eliminem progressivamente os estereótipos (ex. slogans, bandas-desenhadas com heroínas digitais; séries televisivas; plataformas e conteúdos digitais…).
– Celebrar nas escolas o Dia Internacional das Jovens Mulheres nas TIC com diversas iniciativas.
– Estimular o envolvimento ativo neste tema por parte das organizações das mulheres da sociedade civil, tais como a Plataforma Portuguesa para os Direitos das Mulheres, a Rede Portuguesa de Jovens para a Igualdade de Oportunidades entre Mulheres e Homens, a Associação de Mulheres Séc. XXI e a Associação Portuguesa de Estudos sobre as Mulheres.
Referências bibliográficas

ANEXOS
Anexo 1. Matriz Curricular do 3º Ciclo do Ensino Básico

Matriz curricular do 3º ciclo
Decreto-Lei n.º 139/2012 de 5 de julho
Diário da República, 1.ª série — N.º 129 — 5 de julho de 2012
ANEXO II
(a que se referem os artigos 2.º e 8.º)
Ensino básico — 3.º ciclo

No âmbito da sua autonomia, as escolas têm liberdade de organizar os tempos letivos na unidade que considerem mais conveniente desde que respeitem as cargas horárias semanais constantes do quadro infra. Os tempos apresentados correspondem aos tempos mínimos por área disciplinar e disciplinas, pelo que não podem ser aplicados apenas os mínimos, em simultâneo, em todas as disciplinas. O tempo a cumprir é realizado pelo somatório dos tempos alocados às diversas disciplinas, podendo ser feitos ajustes de compensação entre semanas:

<table>
<thead>
<tr>
<th>Componentes do currículo</th>
<th>Carga Horária Semanal (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.º ano</td>
</tr>
<tr>
<td>Áreas disciplinares</td>
<td></td>
</tr>
<tr>
<td>Português</td>
<td>200</td>
</tr>
<tr>
<td>Línguas Estrangeiras</td>
<td>270</td>
</tr>
<tr>
<td>Inglês;</td>
<td></td>
</tr>
<tr>
<td>Língua Estrangeira II;</td>
<td></td>
</tr>
<tr>
<td>Ciências Humanas e Sociais</td>
<td>200</td>
</tr>
<tr>
<td>História;</td>
<td></td>
</tr>
<tr>
<td>Geografia;</td>
<td></td>
</tr>
<tr>
<td>Matemática</td>
<td>200</td>
</tr>
<tr>
<td>Ciências Físicas e Naturais</td>
<td>270</td>
</tr>
<tr>
<td>Ciências Naturais;</td>
<td></td>
</tr>
<tr>
<td>Físico-Química;</td>
<td></td>
</tr>
<tr>
<td>Expressões e Tecnologias</td>
<td>(b) 300</td>
</tr>
<tr>
<td>Educação Visual;</td>
<td></td>
</tr>
<tr>
<td>TIC e Oferta de Escola (c);</td>
<td></td>
</tr>
<tr>
<td>Educação Física;</td>
<td></td>
</tr>
<tr>
<td>Educação Moral e Religiosa (d)</td>
<td>(45)</td>
</tr>
<tr>
<td>Tempo a cumprir</td>
<td>1 530 (1 575)</td>
</tr>
<tr>
<td>Oferta complementar</td>
<td>(e)</td>
</tr>
</tbody>
</table>

(a) Carga letiva semanal em minutos, referente a tempo útil de aula, ficando ao critério de cada escola a distribuição dos tempos pelas diferentes disciplinas de cada área disciplinar, dentro dos limites estabelecidos — mínimo por área disciplinar e total por ano ou ciclo.
(b) Do total da carga, no mínimo, 90 minutos para Educação Visual.
(c) Nos termos do disposto no artigo 11.º.
(d) Disciplina de frequência facultativa, nos termos do artigo 15.º, parte final, com carga fixa de 45 minutos.
Parte B

A presente matriz curricular apresenta, para referência e para efeito exemplificativo, a carga horária semanal organizada em períodos de 45 minutos, assumindo a sua distribuição semanal e por anos de escolaridade um caráter indicativo para as escolas:

<table>
<thead>
<tr>
<th>Componentes do currículo</th>
<th>Carga Horária Semanal (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.º ano</td>
</tr>
<tr>
<td>Áreas disciplinares</td>
<td></td>
</tr>
<tr>
<td>Português</td>
<td>5</td>
</tr>
<tr>
<td>Línguas Estrangeiras</td>
<td>6</td>
</tr>
<tr>
<td>Inglês;</td>
<td></td>
</tr>
<tr>
<td>Língua Estrangeira II</td>
<td></td>
</tr>
<tr>
<td>Ciências Humanas e Sociais</td>
<td>5</td>
</tr>
<tr>
<td>História;</td>
<td></td>
</tr>
<tr>
<td>Geografia;</td>
<td></td>
</tr>
<tr>
<td>Matemática</td>
<td>5</td>
</tr>
<tr>
<td>Ciências Físicas e Naturais</td>
<td>6</td>
</tr>
<tr>
<td>Ciências Naturais</td>
<td></td>
</tr>
<tr>
<td>Físico-Química</td>
<td></td>
</tr>
<tr>
<td>Expressões e Tecnologias</td>
<td>(b) 4</td>
</tr>
<tr>
<td>Educação Visual</td>
<td></td>
</tr>
<tr>
<td>TIC e Oferta de Escola (e):</td>
<td></td>
</tr>
<tr>
<td>Educação Física</td>
<td>3</td>
</tr>
<tr>
<td>Educação Moral e Religiosa (d)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

Tempo a cumprir

- 34 (35)
- 33 (34)
- 33 (34)
- 100 (103)
- (e)
- (e)
- (e)
- (e)

(a) Carga letiva semanal em minutos, referente a tempo útil de aula, ficando ao critério de cada escola a distribuição dos tempos pelas diferentes disciplinas de cada área disciplinar, dentro dos limites estabelecidos — mínimo por área disciplinar e total por ano ou ciclo.

(b) Do total da carga, no mínimo, 2 x 45 minutos para Educação Visual.

(c) Nos termos do disposto no artigo 11.º.

(d) Disciplina de frequência facultativa, nos termos do artigo 15.º, parte final, com carga fixa de 1 x 45 minutos.

(e) Frequência obrigatória para os alunos, desde que criada pela escola, em função da gestão do crédito letivo disponível, nos termos do artigo 12.º.

Anexo 2. Matriz Curricular dos Cursos Científico-Humanísticos do Ensino Secundário

Ensino Secundário – Oferta Formativa (OF)
Cursos Científico-Humanísticos (OF)

Natureza e Organização
Os cursos científico-humanísticos constituem uma oferta educativa vocacionada para o prosseguimento de estudos de nível superior (universitário ou politécnico). Destinam-se a alunos que tenham concluído o 9.º ano de escolaridade ou equivalente. Têm a duração de 3 anos letivos, correspondentes aos 10.º, 11.º e 12.º anos de escolaridade. Conferem um diploma de conclusão do Ensino Secundário (12º ano), bem como o nível 3 de qualificação do Quadro Nacional de Qualificações (QNQ).

Enquadramento legal:
Os cursos científico-humanísticos são regulados pelo Decreto-Lei n.º 139/2012 de 5 de julho, alterado pelo Decreto-Lei n.º 91/2013, de 10 de julho, pelo Decreto-Lei n.º 176/2014, de 12 de dezembro e pela Portaria n.º 243/2012 de 10 de agosto, retificada pela Declaração de Retificação n.º 51/2012, de 21 de setembro.

Matriz

Cursos Científico-Humanísticos:
- Curso de Ciências e Tecnologias;
- Curso de Ciências Socioeconómicas;
- Curso de Línguas e Humanidades;
- Curso de Artes Visuais.

Os planos de estudo dos cursos integram:
A componente de formação geral, comum aos quatro cursos, que visa contribuir para a construção da identidade pessoal, social e cultural dos jovens;
A componente de formação específica, que visa proporcionar formação científica consistente no domínio do respetivo curso;
A disciplina de Educação Moral e Religiosa, de frequência facultativa.
A componente de formação geral é constituída pelas disciplinas de:
Português;
Língua Estrangeira I, II ou III (Alemão, Espanhol, Francês ou Inglês);
Filosofia;
Educação Física.
A componente de formação específica é constituída por:
Uma disciplina trienal obrigatória (10.º, 11.º e 12.º anos);
Duas disciplinas bienais (10.º e 11.º anos), a escolher de entre o leque de opções (c) de cada curso, sendo ambas obrigatoriamente ligadas à natureza do mesmo;
Duas disciplinas anuais (12.º ano), a escolher de entre as opções de cada curso, sendo uma disciplina obrigatoriamente do leque de opções (d), e a outra disciplina do leque de opções (d) ou do leque de opções (e).

Opções (d) – conjunto de disciplinas diretamente ligadas à natureza do curso
Opções (e) – conjunto de disciplinas ligadas a diversas áreas do saber

Fonte: http://www.dge.mec.pt/cursos-cientifico-humanisticos
Curso de Ciências e Tecnologias

Formação Geral

Português (10.º, 11.º e 12.º anos)
Língua Estrangeira I, II ou III - Alemão, Espanhol, Francês ou Inglês (10.º e 11.º anos)
Filosofia (10.º e 11.º anos)
Educação Física (10.º, 11.º e 12.º anos)

Formação Específica

§ Trienal obrigatória (10.º, 11.º e 12.º anos)
Matemática A
§ Bienais (10.º e 11.º anos) - O aluno escolhe duas disciplinas bienais – opções (a):
Biologia e Geologia (10.º e 11.º anos)
Física e Química A (10.º e 11.º anos)
Geometria Descritiva A (10.º e 11.º anos)
§ Anuais (12.º) - O aluno escolhe duas disciplinas anuais de 12.º ano, sendo pelo menos uma obrigatoriamente do conjunto de opções (b):

Opções (b)
Biologia
Física
Geologia
Química

Opções (c)
Antropologia (d)
Aplicações Informáticas B (d)
Ciência Política (d)
Clássicos da Literatura (d)
Direito (d)
Economia C (d)
Filosofia A (d)
Geografia C (d)
Grego (d)
Língua Estrangeira I, II ou III (d)
Psicologia B (d)

(d) Oferta dependente do projeto educativo de escola

Frequência Facultativa

Educação Moral e Religiosa

[v. Portaria n.º 243/2012 de 10 de agosto]
Fonte: http://www.dge.mec.pt/curso-de-ciencias-e-tecnologias-0
Curso de Ciências Socioeconómicas

Formação Geral

Português (10.º, 11.º e 12.º anos)
Língua Estrangeira I, II ou III - Alemão, Espanhol, Francês ou Inglês - (10.º e 11.º anos)
Filosofia (10.º e 11.º anos)
Educação Física (10.º, 11.º e 12.º anos)

Formação Específica

§ Trienal obrigatória (10.º, 11.º e 12.º anos)
Matemática A
§ Bienais (10.º e 11.º anos) - O aluno escolhe duas disciplinas bienais – opções (a):
Economia A
Geografia A
História A
§ Anuais (12.º) - O aluno escolhe duas disciplinas anuais de 12.º ano, sendo pelo menos uma obrigatoriamente do conjunto de opções (b):

Opções (b) Opções (c)
Economia C Antropologia (d)
Geografia C Aplicações Informáticas B (d)
Sociologia Ciência Política (d)
Química Clássicos da Literatura (d)
 Direito (d)
 Filosofia A (d)
 Grego (d)
 Língua Estrangeira I, II ou III (d)
 Psicologia B (d)

(d) Oferta dependente do projeto educativo de escola

Frequência Facultativa

Educação Moral e Religiosa

[v. Portaria n.º 243/2012 de 10 de agosto]
Fonte: http://www.dge.mec.pt/curso-de-ciencias-socioeconomicas
Curso de Línguas e Humanidades

Formação Geral

Português (10.º, 11.º e 12.º anos)
Língua Estrangeira I, II ou III - Alemão, Espanhol, Francês ou Inglês - (10.º e 11.º anos)
Filosofia (10.º e 11.º anos)
Educação Física (10.º, 11.º e 12.º anos)

Formação Específica

§ Trienal obrigatória (10.º, 11.º e 12.º anos)
História A
§ Bienais (10.º e 11.º anos) - O aluno escolhe duas disciplinas bienais – opções (a):
Geografia A
Latim A
Língua Estrangeira I, II, III
Literatura Portuguesa
Matemática Aplicada às Ciências Sociais
§ Anuais (12.º) - O aluno escolhe duas disciplinas anuais de 12.º ano, sendo pelo menos uma obrigatoriamente do conjunto de opções (b):

<table>
<thead>
<tr>
<th>Opções (b)</th>
<th>Opções (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filosofia A</td>
<td>Antropologia (d)</td>
</tr>
<tr>
<td>Geografia C</td>
<td>Aplicações Informáticas B (d)</td>
</tr>
<tr>
<td>Latim B</td>
<td>Ciência Política (d)</td>
</tr>
<tr>
<td>Línguas Estrangeiras I, II ou III</td>
<td>Clássicos da Literatura (d)</td>
</tr>
<tr>
<td>Literatura de Língua Portuguesa</td>
<td>Direito (d)</td>
</tr>
<tr>
<td>Psicologia B</td>
<td>Economia C (d)</td>
</tr>
<tr>
<td>Sociologia</td>
<td>Grego (d)</td>
</tr>
</tbody>
</table>

(d) Oferta dependente do projeto educativo de escola

Frequência Facultativa

Educação Moral e Religiosa

[v. Portaria n.º 243/2012 de 10 de agosto]
Curso de Artes Visuais

Formação Geral

Português (10.º, 11.º e 12.º anos)
Língua Estrangeira I, II ou III - Alemão, Espanhol, Francês ou Inglês - (10.º e 11.º anos)
Filosofia (10.º e 11.º anos)
Educação Física (10.º, 11.º e 12.º anos)

Formação Específica

§ Trienal obrigatória (10.º, 11.º e 12.º anos)

Desenho A

§ Bienais (10.º e 11.º anos) - O aluno escolhe duas disciplinas bienais – opções (a):

- Geometria Descritiva A
- Matemática B

História da Cultura e das Artes

§ Anuais (12.º) - O aluno escolhe duas disciplinas anuais de 12.º ano, sendo pelo menos uma obrigatoriamente do conjunto de opções (b):

- Opções (b)
- Oficina de Artes
- Oficina de Multimédia
- Materiais e Tecnologias

- Opções (c)
- Antropologia
- Aplicações Informáticas B
- Ciência Política
- Clássicos da Literatura
- Direito
- Economia C
- Filosofia A
- Geografia C
- Grego
- Língua Estrangeira I, II, III
- Psicologia B

(d) Oferta dependente do projeto educativo de escola

Frequência Facultativa

Educação Moral e Religiosa

[v. Portaria n.º 243/2012 de 10 de agosto]
Fonte: http://www.dg.mec.pt/curso-de-артes-visuais
Anexo 3. Acesso ao Ensino Superior em TICE, ano letivo 2015/16

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3132 Instituto Politécnico do Porto - Escola Superior de Música e Artes do Espaço</td>
<td>Tecnologia da Comunicação Multimédia</td>
<td>Uma (G.D., H.Cult. Artes, Port.)</td>
<td>20</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>32%</td>
<td>163,1</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>1105 Universidade do Porto - Faculdade de Engenharia</td>
<td>Engenharia Informática e Computação</td>
<td>Fis.Quim.+Mat.A ou Mat.+A Port.</td>
<td>117</td>
<td>50% S + 50% PI</td>
<td>NC=100, PI=95</td>
<td>38%</td>
<td>161,8</td>
<td>Mest Integ</td>
</tr>
<tr>
<td>1105 Universidade do Porto - Faculdade de Engenharia</td>
<td>Engenharia Electrotécnica e de Computadores</td>
<td>Fis.Quim.+Mat.A</td>
<td>200</td>
<td>50% S + 50% PI</td>
<td>NC=100, PI=95</td>
<td>24%</td>
<td>148,0</td>
<td>Mest Integ</td>
</tr>
<tr>
<td>1518 Universidade de Lisboa - Instituto Superior Técnico</td>
<td>Engenharia Electrotécnica e de Computadores</td>
<td>Fis.Quim.+Mat.A</td>
<td>220</td>
<td>50% S + 50% PI</td>
<td>NC=120, PI=100</td>
<td>24%</td>
<td>147,5</td>
<td>Mest Integ</td>
</tr>
<tr>
<td>3064 Instituto Politécnico de Coimbra - Instituto Superior de Engenharia de Coimbra</td>
<td>Engenharia Electromecânica</td>
<td>Fis.Quim.+Mat.</td>
<td>29</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>10%</td>
<td>147,1</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>1518 Universidade de Lisboa - Instituto Superior Técnico</td>
<td>Engenharia Informática e de Computadores</td>
<td>Mat.A</td>
<td>170</td>
<td>50% S + 50% PI</td>
<td>NC=120, PI=100</td>
<td>33%</td>
<td>146,0</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>0906 Universidade Nova de Lisboa - Instituto Superior de Estatística e Gestão de Informação</td>
<td>Sistemas e Tecnologias de Informação</td>
<td>Uma (Eco., Geog., Mat.)</td>
<td>40</td>
<td>65% S + 35% PI</td>
<td>NC=100, PI=95</td>
<td>19%</td>
<td>141,6</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>3083 Universidade do Algarve - Instituto Superior de Engenharia</td>
<td>Engenharia Elétrica e Eletrónica</td>
<td>Fis.Quim.+Mat.</td>
<td>28</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>38%</td>
<td>139,6</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>0300 Universidade de Aveiro</td>
<td>Engenharia Informática</td>
<td>Mat.A ou Bio.Géol.+Mat.A ou Fis.Quim.+Mat.A</td>
<td>47</td>
<td>60% s + 40% PI</td>
<td>NC=95, PI=95</td>
<td>12%</td>
<td>138,0</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>0400 Universidade da Beira Interior</td>
<td>Engenharia Electromecânica</td>
<td>Fis.Quim.+Mat.A</td>
<td>30</td>
<td>65% S + 35% PI</td>
<td>NC=100, PI=95</td>
<td>7%</td>
<td>136,2</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>0400 Universidade da Beira Interior</td>
<td>Engenharia Electrotécnica e de Computadores</td>
<td>Fis.Quim.+Mat.A</td>
<td>20</td>
<td>65% S + 35% PI</td>
<td>NC=100, PI=95</td>
<td>0%</td>
<td>135,4</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>3023 Instituto Politécnico de Beja - Escola Superior de Tecnologia e de Gestão</td>
<td>Engenharia Informática</td>
<td>Mat. ou Fis.Quim.+Mat. ou G.D.+Mat.</td>
<td>50</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>24%</td>
<td>135,2</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>1519 Universidade de Lisboa - Instituto Superior Técnico (Taguspark)</td>
<td>Engenharia Informática e de Computadores</td>
<td>Mat.A</td>
<td>90</td>
<td>50% S + 50% PI</td>
<td>NC=120, PI=100</td>
<td>15%</td>
<td>134,5</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>3135 Instituto Politécnico do Porto - Instituto Superior de Engenharia do Porto</td>
<td>Engenharia Informática</td>
<td>Mat.A</td>
<td>210</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>27%</td>
<td>134,1</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>0300 Universidade de Aveiro</td>
<td>Novas Tecnologias da Comunicação</td>
<td>Uma (Eco., H.Cult. Artes, Port.)</td>
<td>66</td>
<td>60% S + 40% PI</td>
<td>NC=95, PI=95</td>
<td>28%</td>
<td>134,0</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>3242 Instituto Politécnico de Tomar - Escola Superior de Tecnologia de Tomar</td>
<td>Engenharia Electrotécnica e de Computadores</td>
<td>Fis.Quim.+Mat.</td>
<td>35</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>67%</td>
<td>133,5</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>3135 Instituto Politécnico do Porto - Instituto Superior de Engenharia do Porto</td>
<td>Engenharia de Computação e Instrumentação Médica</td>
<td>Fis.Quim.+Mat.A</td>
<td>25</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>0%</td>
<td>133,4</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>1203 Universidade de Trás-os-Montes e Alto Douro - Escola de Ciências e Tecnologia</td>
<td>Comunicação e Multimédia</td>
<td>Uma (G.D., Mat., Port.)</td>
<td>45</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>22%</td>
<td>132,7</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>3012 Universidade de Aveiro - Escola Superior de Tecnologia e Gestão de Agueda</td>
<td>Engenharia Electrotécnica</td>
<td>Fis.Quim.+Mat.</td>
<td>20</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>4%</td>
<td>132,2</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>3064 Instituto Politécnico de Coimbra - Instituto Superior de Engenharia de Coimbra</td>
<td>Engenharia Electrotécnica</td>
<td>Fis.Quim.+Mat.</td>
<td>55</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>4%</td>
<td>131,3</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>0903 Universidade Nova de Lisboa - Faculdade de</td>
<td>Engenharia Informática</td>
<td>Mat.A ou Eco.+Mat.A</td>
<td>170</td>
<td>60% S + 40% PI</td>
<td>NC=95, PI=95</td>
<td>24%</td>
<td>130,6</td>
<td>Lic1º cic</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>3138 Instituto Politécnico do Porto</td>
<td>Escola Superior de Tecnologia e Gestão de Felgueiras</td>
<td>Sistemas de Informação para a Gestão</td>
<td>20</td>
<td>Mat. ou Eco.+Mat.</td>
<td>NC=95, PI=95</td>
<td>35%</td>
<td>130,2</td>
<td>Licº cic</td>
</tr>
<tr>
<td>3102 Instituto Politécnico de Leiria</td>
<td>Escola Superior de Tecnologia e Gestão</td>
<td>Engenharia da Energia e do Ambiente</td>
<td>25</td>
<td>Bio,Geol.+Mat. ou Fis.Quim.+Mat.</td>
<td>NC=100, PI=95</td>
<td>15%</td>
<td>130,1</td>
<td>Licº cic</td>
</tr>
<tr>
<td>3043 Instituto Politécnico de Bragança</td>
<td>Escola Superior de Tecnologia e de Gestão de Bragança</td>
<td>Engenharia Informática</td>
<td>50</td>
<td>Mat.</td>
<td>NC=95, PI=95</td>
<td>20%</td>
<td>129,0</td>
<td>Licº cic</td>
</tr>
<tr>
<td>3118 Instituto Politécnico de Lisboa</td>
<td>Instituto Superior de Engenharia de Lisboa</td>
<td>Engenharia Eletrotécnica</td>
<td>100</td>
<td>Fis.Quim.+Mat.A</td>
<td>NC=95, PI=95</td>
<td>6%</td>
<td>128,6</td>
<td>Licº cic</td>
</tr>
<tr>
<td>6804 ISCTE Instituto Universitário de Lisboa</td>
<td>Informática e Gestão de Empresas</td>
<td>Mat.A</td>
<td>60</td>
<td>50% S + 35% PI</td>
<td>NC=100, PI=95</td>
<td>19%</td>
<td>128,0</td>
<td>Licº cic</td>
</tr>
<tr>
<td>3045 Instituto Politécnico de Viana do Castelo</td>
<td>Faculdade de Ciências e Tecnologia</td>
<td>Mat.A</td>
<td>25</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>6%</td>
<td>127,8</td>
<td>Licº cic</td>
</tr>
<tr>
<td>0501 Universidade de Coimbra</td>
<td>Faculdade de Ciências e Tecnologia</td>
<td>Mat.A ou Fis.Quim.+Mat.A</td>
<td>108</td>
<td>50% S + 50% PI</td>
<td>NC=100, PI=95</td>
<td>22%</td>
<td>127,5</td>
<td>Licº cic</td>
</tr>
<tr>
<td>1501 Universidade de Lisboa</td>
<td>Faculdade de Ciências</td>
<td>Mat.A</td>
<td>60</td>
<td>50% S + 35% PI</td>
<td>NC=100, PI=95</td>
<td>14%</td>
<td>126,0</td>
<td>Licº cic</td>
</tr>
<tr>
<td>1519 Universidade de Lisboa</td>
<td>Instituto Superior Técnico (Taguspark)</td>
<td>Engenharia da Energia e do Ambiente</td>
<td>50</td>
<td>Fis.Quim.+Mat.A</td>
<td>NC=120, PI=100</td>
<td>12%</td>
<td>123,8</td>
<td>Mestr Integ</td>
</tr>
<tr>
<td>3102 Instituto Politécnico de Leiria</td>
<td>Escola Superior de Tecnologia e Gestão</td>
<td>Jogos Digitais e Multimédia</td>
<td>44</td>
<td>Uma(Des., G.D., Mat.)</td>
<td>NC=100, PI=95</td>
<td>34%</td>
<td>123,5</td>
<td>Licº cic</td>
</tr>
<tr>
<td>3163 Instituto Politécnico de Viana do Castelo</td>
<td>Escola Superior de Tecnologia e Gestão</td>
<td>Engenharia da Computação Gráfica e Multimédia</td>
<td>26</td>
<td>Mat. ou Fis.Quim.+Mat. ou G.D.+Mat.</td>
<td>NC=95, PI=95</td>
<td>23%</td>
<td>123,0</td>
<td>Licº cic</td>
</tr>
<tr>
<td>0602 Universidade de Évora</td>
<td>Escola de Ciências e Tecnologia</td>
<td>Engenharia Mecatrónica</td>
<td>29</td>
<td>Fis.Quim.+Mat.A</td>
<td>NC=95, PI=95</td>
<td>18%</td>
<td>122,1</td>
<td>Licº cic</td>
</tr>
<tr>
<td>0300 Universidade de Aveiro</td>
<td>Escola de Ciências e Tecnologia</td>
<td>Mat.A ou Bio,Geol.+Mat.A ou Fis.Quim.+Mat.A</td>
<td>76</td>
<td>60% S + 40% PI</td>
<td>NC=95, PI=95</td>
<td>20%</td>
<td>120,8</td>
<td>Mestr Integ</td>
</tr>
<tr>
<td>0110 Universidade dos Açores</td>
<td>Angra do Heroísmo</td>
<td>Energias Renováveis</td>
<td>20</td>
<td>Duas(Bio,Geol., Fis.Quim., Mat.)</td>
<td>NC=95, PI=95</td>
<td>25%</td>
<td>120,7</td>
<td>Licº cic</td>
</tr>
<tr>
<td>3045 Instituto Politécnico de Bragança</td>
<td>Escola Superior de Tecnologia e Gestão de Bragança</td>
<td>Informática de Gestão</td>
<td>41</td>
<td>Mat.</td>
<td>NC=95, PI=95</td>
<td>0%</td>
<td>120,5</td>
<td>Licº cic</td>
</tr>
<tr>
<td>3135 Instituto Politécnico do Porto</td>
<td>Instituto Superior de Engenharia do Porto</td>
<td>Engenharia de Sistemas</td>
<td>40</td>
<td>Mat. ou Fis.Quim.+Mat.A</td>
<td>NC=95, PI=95</td>
<td>15%</td>
<td>120,4</td>
<td>Licº cic</td>
</tr>
<tr>
<td>1519 Universidade de Lisboa</td>
<td>Instituto Superior Técnico (Taguspark)</td>
<td>Engenharia Eletrônica</td>
<td>34</td>
<td>Fis.Quim.+Mat.A</td>
<td>NC=120, PI=100</td>
<td>7%</td>
<td>120,3</td>
<td>Licº cic</td>
</tr>
<tr>
<td>3102 Instituto Politécnico de Leiria</td>
<td>Escola Superior de Tecnologia e Gestão</td>
<td>Engenharia Automóvel</td>
<td>40</td>
<td>Fis.Quim.+Mat.</td>
<td>NC=100, PI=95</td>
<td>45%</td>
<td>120,1</td>
<td>Licº cic</td>
</tr>
<tr>
<td>1503 Universidade de Lisboa</td>
<td>Faculdade de Ciências</td>
<td>Mat.A ou Fis.Quim.+Mat.A</td>
<td>105</td>
<td>50% S + 50% PI</td>
<td>NC=120, PI=100</td>
<td>5%</td>
<td>120,0</td>
<td>Licº cic</td>
</tr>
<tr>
<td>3242 Instituto Politécnico de Tomar</td>
<td>Escola Superior de Tecnologia de Tomar</td>
<td>Engenharia Informática</td>
<td>45</td>
<td>Mat. ou Fis.Quim.+Mat. ou G.D.+Mat.</td>
<td>NC=95, PI=95</td>
<td>11%</td>
<td>118,7</td>
<td>Licº cic</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
<td>-------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>--------</td>
<td>-----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>3135 Instituto Politécnico do Porto Instituto Superior de Engenharia do Porto</td>
<td>9112 Engenharia Eletrotécnica e de Computadores</td>
<td>Fís.Quim.+Mat.A</td>
<td>155</td>
<td>65% S + 35% PI</td>
<td>NC=95, Pl=95</td>
<td>4%</td>
<td>118.6</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3085 Instituto Politécnico de Coimbra Escola Superior de Tecnologia e Gestão de Oliveveiro do Hospital</td>
<td>9119 Engenharia Informática</td>
<td>Mat. ou Bio.Geol.+Mat. ou Fís.Quim.+Mat.</td>
<td>25</td>
<td>65% S + 35% PI</td>
<td>NC=95, Pl=95</td>
<td>9%</td>
<td>118.2</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>1000 Universidade do Minho</td>
<td>G007 Engenharia de Telecomunicações e Informática Mest Integ</td>
<td>Fís.Quim.+Mat.A</td>
<td>35</td>
<td>60% S + 40% PI</td>
<td>NC=100, Pl=95</td>
<td>10%</td>
<td>118.0</td>
<td>Mest Integ</td>
</tr>
<tr>
<td>6800 ISCTE Instituto Universitário de Lisboa</td>
<td>9098 Engenharia de Telecomunicações e Informática</td>
<td>Fís.Quim.+Mat.A</td>
<td>60</td>
<td>50% S + 50% PI</td>
<td>NC=100, Pl=95</td>
<td>17%</td>
<td>117.0</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3032 Instituto Politécnico do Cávado e do Ave Escola Superior de Tecnologia</td>
<td>8311 Engenharia e Desenvolvimento de Jogos Digitais</td>
<td>Mat. ou Fís.Quim.+Mat. ou G.D.+Mat.</td>
<td>25</td>
<td>65% S + 35% PI</td>
<td>NC=100, Pl=95</td>
<td>33%</td>
<td>116.9</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3084 Instituto Politécnico de Coimbra Instituto Superior de Engenharia de Coimbra</td>
<td>9770 Engenharia Informática (Curso Europeu)</td>
<td>Mat. ou Bio.Geol.+Mat.</td>
<td>5</td>
<td>65% S + 35% PI</td>
<td>NC=95, Pl=95</td>
<td>13%</td>
<td>116.9</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3118 Instituto Politécnico de Lisboa Instituto Superior de Engenharia de Lisboa</td>
<td>9108 Engenharia Eletrônica e Telecomunicações e de Computadores</td>
<td>Fís.Quim.+Mat.A</td>
<td>93</td>
<td>65% S + 35% PI</td>
<td>NC=95, Pl=95</td>
<td>6%</td>
<td>116.8</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3163 Instituto Politécnico de Viana do Castelo Escola Superior de Tecnologia e Gestão</td>
<td>9119 Engenharia Informática</td>
<td>Mat.</td>
<td>60</td>
<td>65% S + 35% PI</td>
<td>NC=95, Pl=95</td>
<td>6%</td>
<td>116.8</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3053 Instituto Politécnico de Castelo Branco Escola Superior de Tecnologia de Castelo Branco</td>
<td>9119 Engenharia Informática</td>
<td>Mat. ou Fís.Quim.+Mat. ou Mat.+Port.</td>
<td>40</td>
<td>65% S + 35% PI</td>
<td>NC=95, Pl=95</td>
<td>22%</td>
<td>116.7</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>1000 Universidade do Minho</td>
<td>9366 Engenharia Eletrônica Industrial e Computadores Mest Integ</td>
<td>Fís.Quim.+Mat.A</td>
<td>80</td>
<td>60% S + 40% PI</td>
<td>NC=100, Pl=95</td>
<td>16%</td>
<td>116.2</td>
<td>Mest Integ</td>
</tr>
<tr>
<td>3032 Instituto Politécnico do Cávado e do Ave Escola Superior de Tecnologia</td>
<td>8409 Engenharia de Sistemas Informáticos</td>
<td>Mat. ou Eco.+Mat. ou Fís.Quim.+Mat.</td>
<td>25</td>
<td>65% S + 35% PI</td>
<td>NC=100, Pl=95</td>
<td>5%</td>
<td>115.8</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>0300 Universidade de Aveiro</td>
<td>9365 Engenharia Eletrônica e Telecomunicações Mest Integ</td>
<td>Fís.Quim.+Mat.A</td>
<td>91</td>
<td>60% S + 40% PI</td>
<td>NC=95, Pl=95</td>
<td>21%</td>
<td>115.6</td>
<td>Mest Integ</td>
</tr>
<tr>
<td>3182 Instituto Politécnico de Viseu Escola Superior de Tecnologia e Gestão de Viseu</td>
<td>9109 Engenharia Eletrotécnica</td>
<td>Fís.Quim.+Mat.</td>
<td>45</td>
<td>65% S + 35% PI</td>
<td>NC=95, Pl=95</td>
<td>15%</td>
<td>115.3</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3135 Instituto Politécnico do Porto Instituto Superior de Engenharia do Porto</td>
<td>9110 Engenharia Eletrotécnica Sistemas Elétricos de Energia</td>
<td>Fís.Quim.+Mat.A</td>
<td>45</td>
<td>65% S + 35% PI</td>
<td>NC=95, Pl=95</td>
<td>6%</td>
<td>115.1</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>0400 Universidade da Beira Interior</td>
<td>9119 Engenharia Informática</td>
<td>Mat.A ou Bio.Geol.+Mat.A ou Fís.Quim.+Mat.A</td>
<td>60</td>
<td>65% S + 35% PI</td>
<td>NC=100, Pl=95</td>
<td>18%</td>
<td>115.0</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3138 Instituto Politécnico do Porto Escola Superior de Tecnologia e Gestão de Felgueiras</td>
<td>8398 Segurança Informática em Redes de Computadores</td>
<td>Mat.</td>
<td>20</td>
<td>65% S + 35% PI</td>
<td>NC=95, Pl=95</td>
<td>0%</td>
<td>115.0</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>0130 Universidade dos Açores Ponta Delgada</td>
<td>9384 Informática Redes e Multimédia</td>
<td>Mat.</td>
<td>25</td>
<td>65% S + 35% PI</td>
<td>NC=95, Pl=95</td>
<td>39%</td>
<td>114.9</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3083 Universidade do Algarve Instituto Superior de Engenharia</td>
<td>L028 Tecnologia e Segurança Alimentar</td>
<td>Umat(Bio.Geol., Fís.Quim., Mat.)</td>
<td>28</td>
<td>65% S + 35% PI</td>
<td>NC=95, Pl=95</td>
<td>7%</td>
<td>114.9</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>1000 Universidade do Minho</td>
<td>G002 Engenharia e Gestão de Sistemas de Informação (regime pós-laboral) Mest Integ</td>
<td>Mat.A</td>
<td>55</td>
<td>60% S + 40% PI</td>
<td>NC=100, Pl=95</td>
<td>3%</td>
<td>114.8</td>
<td>Mest Integ</td>
</tr>
<tr>
<td>3153 Instituto Politécnico de Setúbal Escola Superior de Ciências Empresariais</td>
<td>9630 Gestão de Sistemas de Informação</td>
<td>Mat.</td>
<td>40</td>
<td>65% S + 35% PI</td>
<td>NC=100, Pl=95</td>
<td>25%</td>
<td>114.6</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>1103 Universidade do Porto Faculdade de Ciências</td>
<td>9812 Engenharia de Redes e Sistemas Informáticos Mest Integ</td>
<td>Mat.A</td>
<td>70</td>
<td>50% S + 50% PI</td>
<td>NC=100, Pl=95</td>
<td>11%</td>
<td>114.5</td>
<td>Mest Integ</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>0900 Universidade do Minho</td>
<td>9397 Ciências da Computação</td>
<td>Mat.</td>
<td>52</td>
<td>60% S + 40% PI</td>
<td>NC=100, PI=100</td>
<td>7%</td>
<td>114,4</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>0903 Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia</td>
<td>9367 Engenharia Elétrónica e de Computadores</td>
<td>Mat. ou Fís. Quím.</td>
<td>156</td>
<td>60% S + 40% PI</td>
<td>NC=95, PI=95</td>
<td>14%</td>
<td>114,4</td>
<td>Mestrado Integrado</td>
</tr>
<tr>
<td>3132 Instituto Politécnico de Setúbal Escola Superior de Tecnologia de Setúbal</td>
<td>8315 Tecnologias de Energia</td>
<td>Unas (Bio. Geol., Fis. Quím., Mat.)</td>
<td>40</td>
<td>65% S + 35% PI</td>
<td>NC=100, PI=95</td>
<td>18%</td>
<td>114,4</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>1103 Universidade do Porto Faculdade de Ciências</td>
<td>9696 Ciência de Computadores</td>
<td>Mat.</td>
<td>40</td>
<td>50% S + 50% PI</td>
<td>NC=100, PI=95</td>
<td>6%</td>
<td>114,0</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>3012 Universidade de Aveiro Escola Superior de Tecnologia e Gestão de Agueda</td>
<td>8016 Tecnologias da Informação</td>
<td>Mat.</td>
<td>20</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>10%</td>
<td>113,9</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>3133 Instituto Politécnico do Porto Escola Superior de Engenharia de Lisboa</td>
<td>0501 Tecnologias e Sistemas de Informação para a Web</td>
<td>Mat.</td>
<td>30</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>0%</td>
<td>113,7</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>0602 Universidade de Évora Faculdade de Ciências e Tecnologia</td>
<td>9119 Engenharia Informática</td>
<td>Mat. ou Eco. Mat. A ou Fís. Quím. Mat. A</td>
<td>40</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>27%</td>
<td>113,5</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>1203 Universidade de Trás-os-Montes e Alto Douro Escola de Ciências e Tecnologia</td>
<td>9119 Engenharia Informática</td>
<td>Mat. ou Eco. Mat. A ou Fís. Quím. Mat. A</td>
<td>55</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>7%</td>
<td>113,2</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>1105 Universidade do Porto Faculdade de Engenharia de Minas e Geoambiente</td>
<td>9897 Ciências de Engenharia</td>
<td>Bio. Geol. Mat. A ou Fís. Quím. Mat. A</td>
<td>20</td>
<td>50% S + 50% PI</td>
<td>NC=100, PI=95</td>
<td>5%</td>
<td>112,8</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>0400 Universidade da Beira Interior</td>
<td>0401 Informática Web</td>
<td>Mat. ou G.D. Mat. ou Des. Mat</td>
<td>25</td>
<td>65% S + 35% PI</td>
<td>NC=100, PI=95</td>
<td>27%</td>
<td>111,9</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>3102 Instituto Politécnico de Leiria Escola Superior de Tecnologia e Gestão</td>
<td>9119 Engenharia Informática</td>
<td>Mat. ou Bio. Geol. Mat. A ou Fís. Quím. Mat. A</td>
<td>85</td>
<td>65% S + 35% PI</td>
<td>NC=100, PI=95</td>
<td>44%</td>
<td>111,9</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>3182 Instituto Politécnico de Viseu Escola Superior de Tecnologia e Gestão de Viseu</td>
<td>9119 Engenharia Informática</td>
<td>Mat.</td>
<td>60</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>25%</td>
<td>111,9</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>3143 Instituto Politécnico de Santarém Escola Superior de Tecnologia e Gestão de Santarém</td>
<td>9185 Informática</td>
<td>Mat. ou Eco. Mat. ou Mat. + Port.</td>
<td>45</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>0%</td>
<td>111,4</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>0501 Universidade de Coimbra Faculdade de Ciências e Tecnologia</td>
<td>9367 Engenharia Elétrónica e de Computadores</td>
<td>Mat.</td>
<td>110</td>
<td>50% S + 50% PI</td>
<td>NC=100, PI=95</td>
<td>19%</td>
<td>111,3</td>
<td>Mestrado Integrado</td>
</tr>
<tr>
<td>3138 Instituto Politécnico de Lisboa Instituto Superior de Engenharia de Lisboa</td>
<td>9121 Engenharia Informática e de Computadores</td>
<td>Mat.</td>
<td>120</td>
<td>50% S + 50% PI</td>
<td>NC=100, PI=95</td>
<td>14%</td>
<td>111,0</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>0203 Universidade do Algarve Faculdade de Ciências e Tecnologia</td>
<td>9119 Engenharia Informática</td>
<td>Mat.</td>
<td>50</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>31%</td>
<td>109,3</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>1503 Universidade de Lisboa Faculdade de Ciências</td>
<td>0401 Informática Web</td>
<td>Mat. ou Eco. Mat. ou G.D. Mat.</td>
<td>65</td>
<td>50% S + 50% PI</td>
<td>NC=100, PI=95</td>
<td>16%</td>
<td>108,5</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>3063 Instituto Politécnico de Coimbra Instituto Superior de Contabilidade e Administração de Coimbra</td>
<td>9186 Informática</td>
<td>Mat. ou Eco. Mat.</td>
<td>45</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>17%</td>
<td>108,0</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>1103 Universidade do Porto Faculdade de Ciências</td>
<td>9824 Ciências de Engenharia</td>
<td>Fís. Quím. Mat. A</td>
<td>30</td>
<td>50% S + 50% PI</td>
<td>NC=100, PI=95</td>
<td>32%</td>
<td>107,8</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>6800 ISCTE Instituto Universitário de Lisboa</td>
<td>8366 Informática e Gestão de Empresas (regime pós-laboral)</td>
<td>Mat. A</td>
<td>35</td>
<td>50% S + 50% PI</td>
<td>NC=100, PI=95</td>
<td>7%</td>
<td>106,5</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>3138 Instituto Politécnico do Porto Escola Superior de Tecnologia e Gestão de Felgueiras</td>
<td>9119 Engenharia Informática</td>
<td>Mat.</td>
<td>60</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>5%</td>
<td>105,8</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>3064 Instituto Politécnico de Coimbra Instituto Superior de Engenharia de Coimbra</td>
<td>9119 Engenharia Informática</td>
<td>Mat. ou Bio. Geol. Mat. A</td>
<td>140</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>12%</td>
<td>105,6</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>3118 Instituto Politécnico de Lisboa Instituto Superior de Tecnologia e Gestão</td>
<td>0502 Engenharia Informática e Multimédia</td>
<td>Mat. A ou Mat.</td>
<td>70</td>
<td>50% S + 50% PI</td>
<td>NC=95, PI=95</td>
<td>11%</td>
<td>105,5</td>
<td>Licenciatura 1º cic</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------</td>
<td>-------------------</td>
<td>-------------</td>
<td>--------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>6800 BCTE Instituto Universitário de Lisboa</td>
<td>Engenharia Informática (regime pós-laboral)</td>
<td>Mat.+A</td>
<td>35</td>
<td>50% S + 50% PI</td>
<td>NC=100, PI=95</td>
<td>7%</td>
<td>102,0</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3152 Instituto Politécnico de Setúbal Escola Superior de Tecnologia de Setúbal</td>
<td>Engenharia Informática</td>
<td>Mat. ou G.D.+Mat.</td>
<td>66</td>
<td>65% S + 35% PI</td>
<td>NC=100, PI=95</td>
<td>17%</td>
<td>101,9</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>4500 Instituto Superior Miguel Torga</td>
<td>Informática</td>
<td>Mat. ou G.D.+Mat. ou Mat.+Port.</td>
<td>50% S + 50% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
<td></td>
</tr>
<tr>
<td>4141 Instituto de Estudos Superiores Financeiros e Fiscais (Porto)</td>
<td>Informática de Gestão</td>
<td>Mat. ou Eco.+Mat. ou Mat.+Port.</td>
<td>50% S + 50% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
<td></td>
</tr>
<tr>
<td>1300 Universidade da Madeira</td>
<td>A003 Eng Civil+Eng Eletrónica e Telecomunicações</td>
<td>Fix.Quim.+Mat.</td>
<td>40</td>
<td>55% S + 45% PI</td>
<td>NC=95, PI=95</td>
<td>50%</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>1300 Universidade da Madeira</td>
<td>Engenharia Informática</td>
<td>Mat.</td>
<td>60</td>
<td>55% S + 45% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>1000 Universidade do Minho</td>
<td>G005 Engenharia Informática</td>
<td>Mat.</td>
<td>140</td>
<td>60% S + 40% PI</td>
<td>NC=100, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Mest Integ</td>
</tr>
<tr>
<td>2223 Universidade Católica Portuguesa Faculdade de Ciências Sociais</td>
<td>Tecnologias de Informação e Comunicação</td>
<td>Uma (Inglês, Mat., Port.)</td>
<td>60% S + 40% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
<td></td>
</tr>
<tr>
<td>0602 Universidade de Évora Escola de Ciências e Tecnologia</td>
<td>Engenharia de Energias Renováveis</td>
<td>Fix.Quim.+Mat.A</td>
<td>20</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>0%</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>1203 Universidade de Trás-os-Montes e Alto Douro Escola de Ciências e Tecnologia</td>
<td>Engenharia Eletrotécnica e de Computadores</td>
<td>Fix.Quim.+Mat.A</td>
<td>30</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Mest Integ</td>
</tr>
<tr>
<td>1203 Universidade de Trás-os-Montes e Alto Douro Escola de Ciências e Tecnologia</td>
<td>Tecnologias de Informação e Comunicação</td>
<td>Mat. ou Eco.+Mat. ou Mat.+Port.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>0%</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
<td></td>
</tr>
<tr>
<td>7105 Escola Superior Náutica Infante D. Henrique</td>
<td>Engenharia de Sistemas Eletrónicos Marítimos</td>
<td>Fix.Quim.+Mat.</td>
<td>25</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>0%</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3045 Instituto Politécnico de Bragança Escola Superior de Comunicação, Administração e Turismo de Miranda</td>
<td>Informática e Comunicações</td>
<td>Mat.</td>
<td>24</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>0%</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3043 Instituto Politécnico de Bragança Escola Superior de Tecnologia e de Gestão de Bragança</td>
<td>Engenharia Eletrotécnica e de Computadores</td>
<td>Fix.Quim.+Mat.</td>
<td>45</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>0%</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3043 Instituto Politécnico de Bragança Escola Superior de Tecnologia e de Gestão de Bragança</td>
<td>Engenharia de Energias Renováveis</td>
<td>Fix.Quim.+Mat.</td>
<td>45</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>0%</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3043 Instituto Politécnico de Bragança Escola Superior de Tecnologia e de Gestão de Bragança</td>
<td>Tecnologia e Gestão Industrial</td>
<td>Mat.</td>
<td>30</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3053 Instituto Politécnico de Castelo Branco Escola Superior de Tecnologia de Castelo Branco</td>
<td>Engenharia Eletrotécnica e das Telecomunicações</td>
<td>Fix.Quim.+Mat.</td>
<td>25</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>0%</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3053 Instituto Politécnico de Castelo Branco Escola Superior de Tecnologia de Castelo Branco</td>
<td>Engenharia das Energias Renováveis</td>
<td>Fix.Quim.+Mat.</td>
<td>25</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>0%</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3053 Instituto Politécnico de Castelo Branco Escola Superior de Tecnologia de Castelo Branco</td>
<td>Tecnologias da Informação e Multimédia</td>
<td>Mat. ou G.D.+Mat. ou Mat.+Port.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>0%</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
<td></td>
</tr>
<tr>
<td>3032 Instituto Politécnico do Cávado e do Ave Escola Superior de Tecnologia</td>
<td>Engenharia Eletrotécnica e de Computadores</td>
<td>Fix.Quim.+Mat.</td>
<td>20</td>
<td>65% S + 35% PI</td>
<td>NC=100, PI=95</td>
<td>20%</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>3032 Instituto Politécnico do Cávado e do Ave Escola Superior de Tecnologia</td>
<td>Sistemas Informáticos (regime pós-laboral)</td>
<td>Mat. ou Eco.+Mat. ou Fix.Quim.+Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=100, PI=95</td>
<td>0%</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
<td></td>
</tr>
<tr>
<td>3064 Instituto Politécnico de Coimbra Instituto Superior</td>
<td>Engenharia Informática (regime pós-laboral)</td>
<td>Fix.Quim.+Mat.</td>
<td>20</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--------------------</td>
<td>-------</td>
<td>--------------------</td>
<td>--------------</td>
<td>--------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>de Engenharia de Coimbra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3064 Instituto Politécnico de Coimbra</td>
<td>Instituto Superior de Engenharia de Coimbra</td>
<td>9885 Engenharia Informática (regime pós-laboral)</td>
<td></td>
<td>Mat. ou Bio.Geol.+Mat.</td>
<td>20</td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>17% n.d. Lic1ª cic</td>
</tr>
<tr>
<td>3092 Instituto Politécnico da Guarda</td>
<td>Escola Superior de Tecnologia e Gestão</td>
<td>9119 Engenharia Informática</td>
<td></td>
<td>Mat.</td>
<td>40</td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>11% n.d. Lic1ª cic</td>
</tr>
<tr>
<td>3102 Instituto Politécnico de Leiria</td>
<td>Escola Superior de Tecnologia e Gestão</td>
<td>9112 Engenharia Eletrotécnica e de Computadores</td>
<td>35</td>
<td>Fís.Quim.+Mat.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC=100, PI≥95</td>
<td>n.d. Lic1ª cic</td>
</tr>
<tr>
<td>3102 Instituto Politécnico de Leiria</td>
<td>Escola Superior de Tecnologia e Gestão</td>
<td>L104 Engenharia Eletrotécnica e de Computadores (regime pós-laboral)</td>
<td>15</td>
<td>Fís.Quim.+Mat.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC≥100, PI≥95</td>
<td>n.d. Lic1ª cic</td>
</tr>
<tr>
<td>3122 Instituto Politécnico de Portalegre</td>
<td>Escola Superior de Tecnologia e Gestão</td>
<td>9119 Engenharia Informática</td>
<td>25</td>
<td>Mat.A</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>0% n.d. Lic1ª cic</td>
</tr>
<tr>
<td>3143 Instituto Politécnico de Santarém</td>
<td>Escola Superior de Gestão e Tecnologia de Santarém</td>
<td>1064 Redes Sociais</td>
<td>35</td>
<td>Mat.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>0% n.d. Lic1ª cic</td>
</tr>
<tr>
<td>3152 Instituto Politécnico de Setúbal</td>
<td>Escola Superior de Tecnologia de Setúbal</td>
<td>9092 Engenharia de Automação, Controlo e Instrumentação</td>
<td>40</td>
<td>Fís.Quim.+Mat.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC=100, PI≥95</td>
<td>0% n.d. Lic1ª cic</td>
</tr>
<tr>
<td>3152 Instituto Politécnico de Setúbal</td>
<td>Escola Superior de Tecnologia de Setúbal</td>
<td>9112 Engenharia Eletrotécnica e de Computadores</td>
<td>60</td>
<td>Fís.Quim.+Mat.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC=100, PI≥95</td>
<td>0% n.d. Lic1ª cic</td>
</tr>
<tr>
<td>3152 Instituto Politécnico de Setúbal</td>
<td>Escola Superior de Tecnologia de Setúbal</td>
<td>9862 Tecnologia e Gestão Industrial (regime noturno)</td>
<td>45</td>
<td>Umat.Eco., G.D., Mat.)</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC=100, PI≥95</td>
<td>43% n.d. Lic1ª cic</td>
</tr>
<tr>
<td>3243 Instituto Politécnico de Tomar</td>
<td>Escola Superior de Tecnologia de Abrantes</td>
<td>9250 Tecnologias de Informação e Comunicação</td>
<td>30</td>
<td>Mat. ou Eco.+Mat. ou Mat.+Port.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>n.d. Lic1ª cic</td>
</tr>
<tr>
<td>3163 Instituto Politécnico de Viana do Castelo</td>
<td>Escola Superior de Tecnologia e Gestão</td>
<td>9750 Engenharia Eletrônica e Redes de Computadores</td>
<td>30</td>
<td>Fís.Quim.+Mat.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>13% n.d. Lic1ª cic</td>
</tr>
<tr>
<td>3163 Instituto Politécnico de Viana do Castelo</td>
<td>Escola Superior de Tecnologia e Gestão</td>
<td>9837 Engenharia de Sistemas de Energias Renováveis</td>
<td>35</td>
<td>Fís.Quim.+Mat.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>0% n.d. Lic1ª cic</td>
</tr>
<tr>
<td>3186 Instituto Politécnico de Viseu</td>
<td>Escola Superior de Tecnologia e Gestão de Lamego</td>
<td>9122 Engenharia Informática e Telecomunicações</td>
<td>25</td>
<td>Mat. ou Fís.Quim.+Mat.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>14% n.d. Lic1ª cic</td>
</tr>
<tr>
<td>3437 Instituto Superior Manuel Teixeira Gomes</td>
<td></td>
<td>9119 Engenharia Informática</td>
<td>Mat.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>n.d. n.d. Lic1ª cic</td>
<td></td>
</tr>
<tr>
<td>3438 Instituto Universitário da Madeira ISMAI</td>
<td></td>
<td>9934 Energias Renováveis</td>
<td>Umat(Bio.Geol., Fis.Quim., Mat.)</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>n.d. n.d. Lic1ª cic</td>
<td></td>
</tr>
<tr>
<td>3438 Instituto Universitário da Madeira ISMAI</td>
<td></td>
<td>9185 Informática</td>
<td>Mat.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>n.d. n.d. Lic1ª cic</td>
<td></td>
</tr>
<tr>
<td>3438 Instituto Universitário da Madeira ISMAI</td>
<td></td>
<td>9240 Tecnologias de Comunicação Multimédia</td>
<td>Umat(Fís., G.D., Mat., Port.)</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>n.d. n.d. Lic1ª cic</td>
<td></td>
</tr>
<tr>
<td>2700 Universidade Atlântica</td>
<td></td>
<td>9159 Gestão de Sistemas e Computação</td>
<td>Mat.A</td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>n.d. n.d. Lic1ª cic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2700 Universidade Atlântica</td>
<td></td>
<td>8187 Sistemas e Tecnologias da Informação</td>
<td>Mat.A</td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>n.d. n.d. Lic1ª cic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100 Universidade Autónoma de Lisboa Luís de Camões</td>
<td></td>
<td>9119 Engenharia Informática</td>
<td>Mat.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>n.d. n.d. Lic1ª cic</td>
<td></td>
</tr>
<tr>
<td>2100 Universidade Autónoma de Lisboa Luís de Camões</td>
<td></td>
<td>9176 Informática de Gestão</td>
<td>Mat.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC≥95, PI≥95</td>
<td>n.d. n.d. Lic1ª cic</td>
<td></td>
</tr>
<tr>
<td>4350 Universidade Europeia</td>
<td></td>
<td>L104 Desenvolvimento de Jogos e de Aplicações</td>
<td>Mat. ou G.D.+Mat. ou Fís.Quim.+Mat.</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC≥98, PI≥95</td>
<td>n.d. n.d. Lic1ª cic</td>
<td></td>
</tr>
<tr>
<td>4350 Universidade Europeia</td>
<td></td>
<td>9119 Engenharia Informática</td>
<td>Mat. ou Bio.Geol.+Mat.</td>
<td></td>
<td>65% S + 35% PI</td>
<td>NC≥98, PI≥95</td>
<td>n.d. n.d. Lic1ª cic</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>4350 Universidade Europeia</td>
<td>9186 Informática de Gestão</td>
<td>Mat. ou Eco.+Mat. ou Geog.+Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=98, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>4350 Universidade Europeia</td>
<td>8286 Sistemas de Informação, Web e Multimédia</td>
<td>Mat. ou Eco.+Mat. ou G.I.D.+Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=98, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>2750 Universidade Fernando Pessoa</td>
<td>9119 Engenharia Informática</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=100, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>2400 Universidade Lusíada</td>
<td>9119 Engenharia Informática</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>2400 Universidade Lusíada</td>
<td>9185 Informática</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>2402 Universidade Lusíada de Vila Nova de Famalicão</td>
<td>9547 Engenharia Elétrónica e Informática</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>2800 Universidade Lusófona de Humanidades e Tecnologias</td>
<td>8462 Aplicações Multimédia e Videojogos</td>
<td>Umar(Des., Mat., Port.)</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>2800 Universidade Lusófona de Humanidades e Tecnologias</td>
<td>9109 Engenharia Eléctrotécnica</td>
<td>Fis. Quím.+Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>2800 Universidade Lusófona de Humanidades e Tecnologias</td>
<td>8379 Engenharia da Energia</td>
<td>Fis. Quím.+Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>2800 Universidade Lusófona de Humanidades e Tecnologias</td>
<td>9119 Engenharia Informática</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>2800 Universidade Lusófona de Humanidades e Tecnologias</td>
<td>9186 Informática de Gestão</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>4032 Universidade Lusíada do Porto</td>
<td>8277 Engenharia Electrotécnica de Sistemas de Energia</td>
<td>Fis. Quím.+Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>4032 Universidade Lusíada do Porto</td>
<td>9119 Engenharia Informática</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>2500 Universidade Portucalense Infante D. Henrique</td>
<td>9647 Gestão e Sistemas de Informação</td>
<td>Umar(Eco., Mat.)</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>2500 Universidade Portucalense Infante D. Henrique</td>
<td>9185 Informática</td>
<td>Mat. ou Fis. Quím.+Mat. A</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>2500 Universidade Portucalense Infante D. Henrique</td>
<td>9251 Tecnologias e Sistemas de Informação</td>
<td>Mat. A</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>4115 Escola Superior de Tecnologias de Fafe</td>
<td>9186 Informática de Gestão</td>
<td>Mat. A</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>4305 Instituto Superior de Gestão Bancária</td>
<td>9647 Gestão e Sistemas de Informação</td>
<td>Umar(Eco., Mat.Apl.C.S., Port.)</td>
<td>65% S + 35% PI</td>
<td>NC=98, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>4442 Instituto Superior Politécnico Gaya Escola Superior de Ciência e Tecnologia</td>
<td>9106 Engenharia Eléctrotécnica de Automação</td>
<td>Fis. Quím.+Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=98, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>4442 Instituto Superior Politécnico Gaya Escola Superior de Ciência e Tecnologia</td>
<td>9910 Engenharia de Energias Renováveis</td>
<td>Fis. Quím.+Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=98, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>4442 Instituto Superior Politécnico Gaya Escola Superior de Ciência e Tecnologia</td>
<td>9119 Engenharia Informática</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=98, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>4442 Instituto Superior Politécnico Gaya Escola Superior de Ciência e Tecnologia</td>
<td>9186 Informática de Gestão</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=98, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>4385 Instituto Superior Politécnico do Oeste</td>
<td>9186 Informática de Gestão</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>4530 Instituto Superior de Tecnologias Avançadas de Lisboa</td>
<td>9124 Engenharia Multimédia</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>4530 Instituto Superior de Tecnologias Avançadas de Lisboa</td>
<td>9185 Informática</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic1º cic</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>4531 Instituto Superior de Tecnologias Avançadas de Lisboa (Porto)</td>
<td>9124 Engenharia Multimédia</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
<td></td>
</tr>
<tr>
<td>4531 Instituto Superior de Tecnologias Avançadas de Lisboa (Porto)</td>
<td>9185 Informática</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
<td></td>
</tr>
<tr>
<td>4572 ISLA Instituto Politécnico de Gestão e Tecnologia Escola Superior de Tecnologia</td>
<td>1013 Sistemas Multimédia</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
<td></td>
</tr>
<tr>
<td>4352 ISLA Instituto Superior de Gestão e Administração de Santarém</td>
<td>9186 Informática de Gestão</td>
<td>Mat.</td>
<td>65% S + 35% PI</td>
<td>NC=95, PI=95</td>
<td>n.d.</td>
<td>n.d.</td>
<td>Lic 1º cic</td>
<td></td>
</tr>
</tbody>
</table>

Legenda:
Provas de Ingresso = Provas de ingresso exigidas
Preq. = Grupo do prérequisito, se exigido
Vagas = Vagas fixadas para a 1ª fase
Fórmula de Cálculo:
S = Nota do secundário ; PI = Prova de ingresso ; PR = Prerequisito
Notas Mínimas exigidas:
NC = Nota de candidatura PI = Provas de ingresso
1ª Op. = Percentagem de candidatos em 1ª opção, na 1ª fase do ano anterior
Ult.Col. = Nota do último colocado pelo contingente geral, na 1ª fase do ano anterior
Anexo 4. Guiões de focus-groups com alunos no ensino secundário e pós-secundário
1. Objetivos do focus-group

Conhecer as percepções de jovens/alunos relativamente à formação e emprego em TICE e os principais fatores facilitadores e de bloqueio na opção por estas áreas, num momento decisivo do seu percurso escolar (o ensino secundário).

2. Composição do focus-group

10 a 12 alunos do 10º ano e 12º ano de escolaridade, dos quatro cursos científico-humanísticos: (1) Ciências e Tecnologias; (2) Ciências Socioeconómicas; (3) Artes Visuais; (4) Línguas e Humanidades. É essencial assegurar que o grupo de alunos participante no focus-group seja composto por ambos os sexos e que alguns destes alunos estejam, à partida, motivados para seguir para formações/carreiras em TICE.

O dinamizador do focus-group deve começar por apresentar brevemente o estudo e os seus objetivos, lançar as questões para discussão e moderar o debate, dando oportunidade a que todos os participantes intervenham e procurando obter informação sobre todas as questões. Para cada questão, são sugeridos alguns tópicos de discussão [em itálico], entre outros que surjam como relevantes, que não devem ser apresentados ou lidos aos participantes do focus-group. Servem apenas para ajudar o dinamizador, quando necessário, a concretizar as questões e a incentivar a discussão, lançando novas pistas para recolher as opiniões e percepções dos participantes.

A duração estimada do focus-group é de 2 horas.

3. Relatório do focus-group

O focus-group deve ser gravado, com informação e autorização prévia dos participantes. O relatório do focus-group consiste na transcrição integral do discurso de cada participante, em cada uma das suas intervenções e na ordem em que ocorreram. Em cada uma das intervenções transcritas deverá ser identificado o respetivo participante/orador apenas com a indicação - ALUNO #1, ALUNO #2..., - conforme consta da primeira página do guião.

Solicita-se o envio do relatório até ao dia 9 de Outubro 2015, para a entidade coordenadora do estudo – FORUM ESTUDANTE -, nomeadamente para os seguintes contactos: anaclaudia.valente@sapo.pt; jorge.vicente@forum.pt; irinabetencourt@gmail.com; isabel.correia@forum.pt. Para mais informações ou esclarecimento de dúvidas, deve também usar os contactos referidos.

Agradecemos, desde já, a vossa valiosa e estimada colaboração.
<table>
<thead>
<tr>
<th>ALUNO #1</th>
<th>Curso científico-humanístico:</th>
<th>Ano de escolaridade:</th>
<th>Idade:</th>
<th>Sexo:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALUNO #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALUNO #3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALUNO #4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALUNO #5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALUNO #6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALUNO #7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALUNO #8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALUNO #9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALUNO #10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Porque é que escolheram a área/curso em que estão no secundário?
[por exemplo, já sabem o que querem seguir; sempre souberam o que querem seguir; têm gosto/interesse pela área; porque não são bons noutras áreas ou noutras disciplinas; optaram por uma área que dá acesso a mais cursos e/ou a cursos diferentes entre si; as perspetivas de empregabilidade nesta área; a reputação da área e dos cursos/saídas profissionais que podem seguir;... não sabem porquê...]

2. Quanto usam as TIC no vosso dia-a-dia, quanto tempo o fazem e para quê? E como avaliam as vossas competências em TIC?
[por exemplo, estimativa de tempo/dia; acesso às TIC em casa/na escola; usam as TIC mais para lazer/diversão; estudar/fazer trabalhos para a escola; pesquisar informação/aprender outras coisas que se interessam; comunicar/trocar mensagens/estar nas redes sociais; encontrar e comprar ou vender coisas...; e o que conseguem saber fazer: web surfing; jogar online; email, chatting; tirar fotografias; fazer chamadas pela net; ouvir música e ver filmes; criar um blog; fazer downloads; usar o office (processar/formatar textos, fazer apresentações multimédia, usar folhas de cálculo, usar bases de dados...); criar websites; programar; criar softwares; perceber/resolver problemas de hardware...]

3. Alguém quer ou gostaria de seguir para um curso (médio/superior) em TICE (informática, eletrónica, multimédia...)? Porquê?
[por exemplo, os cursos são difíceis; é preciso muita matemática e/ou física; é preciso ser muito bom em programação; é preciso passar muitas horas ao computador; só os nerds/geeks é que gostam; as raparigas não gostam e/ou não sabem; é preciso gostar muito/ser obcecado por tecnologia/informática/eletrónica; é preciso ser autodidata/aprender sozinho; é preciso ter já boas bases; são cursos que exigem muito trabalho, para além das aulas; é um curso/uma área muito técnica; trabalha-se só com tecnologia e máquinas; tem-se pouco contacto com pessoas; é preciso estar sempre “em cima do acontecimento” (manter-se constantemente atualizado); é muito prático/é preciso resolver problemas, testar soluções e encontrar alternativas; é preciso ser criativo porque tem de se “(re)inventar” soluções/produtos; é preciso ser-se muito autónomo; gostaram da formação em TIC que já tiveram na escola; nas aulas de TIC aprenderam muito; já são bons a usar as TIC; estes cursos têm muitas saídas profissionais; pode fazer-se muita coisa e trabalhar em qualquer lado; as perspetivas de arranjar emprego são boas; estes cursos/saídas profissionais têm uma boa imagem/são reputados; gostam/iêm interesse na área....]
4. E já têm alguma informação sobre os cursos em TICE? Onde acederam a essa informação?

[por exemplo, na escola básica ou secundária; no contacto com universidades e politécnicos (“o dia aberto da universidade”; visitas de estudo; mostras de cursos/ instituições de ensino superior nas escolas;...); com os professores; com os serviços de orientação da escola/ fora da escola; na comunicação social (revistas, jornais, televisão, ...); na internet; nos websites do ministério com informação sobre cursos; em feiras e exposições sobre os cursos disponíveis; no contacto com profissionais e empresas da área; na experiência de estágios de verão, em part-times, em voluntariado ou trabalho comunitário relacionados com área/ curso ...]

5. E os vossos pais/ encarregados de educação, encorajam ou não um curso em TICE? E há outras pessoas (ou entidades) que são importantes nesta vossa escolha do curso?

[por exemplo, amigos, colegas de escola, irmãos, pais (pai ou mãe) / encarregados de educação, professores, professores de TIC, psicólogos de orientação vocacional, potenciais empregadores, empresas-líder na área, nacionais ou multinacionais, “gurus” da informática como Bill Gates, Steve Jobs, Mark Zuckerberg....; associações do sector, políticas e incentivos do governo e/ou de instituições de ensino superior....; ninguém, outros...]

6. Que coisas são importantes quando pensam na profissão/ carreira que gostariam de ter?

[por exemplo, trabalhar numa área que goste; ter um trabalho interessante; ter um trabalho desafiante; poder ser criativo; poder ser autónomo; trabalhar com pessoas; ajudar os outros; ser socialmente útil; trabalhar com tecnologia; resolver problemas técnicos; ter um bom salário/ ganhar bem; ter uma profissão com elevado estatuto; ter segurança no emprego; ter um horário flexível; ter o meu próprio negócio, poder ser empresário ou trabalhar por conta própria; poder ser independente; ter tempo para mim; ter tempo para a família; ter um trabalho pouco stressante; ter um ambiente de trabalho; trabalhar em boas empresas; ter boas condições de trabalho; poder viajar;...]

7. E como é que acham que é trabalhar ou ter uma carreira em TICE?

[por exemplo, é fácil ou difícil encontrar trabalho/ emprego; é bem ou mal pago; é exigente e complicado ou não; é interessante ou não; é desafiante ou não; é agradável ou maçador; é desafiante ou não; é muito competitivo ou não; é um emprego seguro/ estável ou não; é um “emprego para a vida” ou não; é necessário estar sempre actualizado; dá oportunidades de promoção ou não; trabalha-se mais sozinho ou com outros/ em rede; pode trabalhar-se a partir de casa; ter uma profissão que tem um bom estatuto social; poder trabalhar em qualquer lugar do mundo; poder mudar facilmente de emprego; poder trabalhar em coisas diferentes; ...].

8. Para os que não querem seguir um curso TICE, o que vos faria mudar de ideias?
1. Objetivos do focus-group

Conhecer as percepções de jovens/alunos relativamente à formação e emprego em TICE e os principais fatores facilitadores e de bloqueio na opção por estas áreas.

2. Composição do focus-group

10 a 12 alunos do 1º ano dos cursos (cursos profissionais ou cursos de aprendizagem, ensino secundário), em particular das seguintes áreas de educação/formação: em TICE [Ciências Informáticas (481); e/ou Eletrónica e Automação (523); e/ou Audiovisuais e produção dos média (213)]; em áreas CTEM não-TICE (CNAEF 4 e 5, não incluídas nas anteriores). É essencial assegurar que o grupo de alunos participante no focus-group seja composto por ambos os sexos.

O dinamizador do focus-group deve começar por apresentar brevemente o estudo e os seus objetivos, lançar as questões para discussão e moderar o debate, dando oportunidade a que todos os participantes intervenham e procurando obter informação sobre todas as questões. Para cada questão, são sugeridos alguns tópicos de discussão [em itálico], entre outros que surjam como relevantes, que não devem ser apresentados ou lidos aos participantes do focus-group. Servem apenas para ajudar o dinamizador, quando necessário, a concretizar as questões e a incentivar a discussão, lançando novas pistas para recolher opiniões e percepções dos participantes.

Sugere-se que a dinamização do focus-group, quando não realizada pela equipa do estudo, seja feita pelo representante da instituição de ensino/formação na Rede Maior Empregabilidade – Ensino Profissional, em estreita colaboração com os responsáveis ou docentes da área/departamentos de TICE.

A duração estimada do focus-group é de 2 horas.

3. Relatório do focus-group

O focus-group deve ser gravado, com informação e autorização prévia dos participantes. O relatório do focus-group consiste na transcrição integral do discurso de cada participante, em cada uma das suas intervenções e na ordem em que ocorreram. Em cada uma das intervenções transcritas deverá ser identificado o respetivo participante/orador apenas com a indicação – ALUNO #1, ALUNO #2…, conforme consta da primeira página do guia.

Solicita-se o envio do relatório até ao dia 9 de Outubro 2015, para a entidade coordenadora do estudo – FORUM ESTUDANTE –, nomeadamente para os seguintes contactos: anaclaudia.valente@sapo.pt; jorge.vicente@forum.pt; irinabetencourt@gmail.com; isabel.correia@forum.pt. Para mais informações ou esclarecimento de dúvidas, deve também usar os contactos referidos.

Agradecemos, desde já, a vossa valiosa e estimada colaboração.
INSTITUIÇÃO DE ENSINO/ FORMAÇÃO

Instituição:
Data do focus-group:
Dinamizador do focus-group/ Pessoa de contacto:
Email:

PARTICIPANTES NO FOCUS-GROUP

ALUNO #1

<table>
<thead>
<tr>
<th>Curso</th>
<th>Ano de curso</th>
<th>Idade</th>
<th>Sexo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CNAEF do curso [a preencher pela instituição]:

ALUNO #2

<table>
<thead>
<tr>
<th>Curso</th>
<th>Ano de curso</th>
<th>Idade</th>
<th>Sexo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CNAEF do curso [a preencher pela instituição]:

ALUNO #3

<table>
<thead>
<tr>
<th>Curso</th>
<th>Ano de curso</th>
<th>Idade</th>
<th>Sexo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CNAEF do curso [a preencher pela instituição]:

ALUNO #4

<table>
<thead>
<tr>
<th>Curso</th>
<th>Ano de curso</th>
<th>Idade</th>
<th>Sexo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CNAEF do curso [a preencher pela instituição]:

ALUNO #5

<table>
<thead>
<tr>
<th>Curso</th>
<th>Ano de curso</th>
<th>Idade</th>
<th>Sexo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CNAEF do curso [a preencher pela instituição]:

ALUNO #6

<table>
<thead>
<tr>
<th>Curso</th>
<th>Ano de curso</th>
<th>Idade</th>
<th>Sexo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CNAEF do curso [a preencher pela instituição]:

ALUNO #7

<table>
<thead>
<tr>
<th>Curso</th>
<th>Ano de curso</th>
<th>Idade</th>
<th>Sexo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CNAEF do curso [a preencher pela instituição]:

ALUNO #8

<table>
<thead>
<tr>
<th>Curso</th>
<th>Ano de curso</th>
<th>Idade</th>
<th>Sexo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CNAEF do curso [a preencher pela instituição]:

189
1. Porque é que escolheram o curso em que estão?

[por exemplo, já sabem o que querem seguir; sempre souberam o que querem seguir; têm gosto/ interesse pela área das TICE (informática, electrónica, multimédia...); porque não são bons noutras áreas ou noutras disciplinas; não têm interesse pelos cursos gerais; preferem uma formação mais prática; gostavam de trabalhar logo a seguir ao curso; precisam de começar a trabalhar/a ganhar dinheiro; acham que estes cursos são mais fáceis; precisam de fazer o 12º ano; têm menos aulas teóricas; a matemática é menos exigente; gostaram da formação em TIC que já tiveram na escola; nas aulas de TIC aprenderam muito; já são bons a usar as TIC; estes cursos têm muitas saídas profissionais; pode fazer-se muita coisa e trabalhar em qualquer lado; as perspetivas de arranjar emprego são boas; estes cursos/ saídas profissionais têm uma boa imagem/ são reputados; a reputação do curso/escola ou centro de formação; o interesse/ qualidade do programa do curso; as bolsas ou outros incentivos dados para a frequência dos cursos; ... não sabem porquê...]

2. Quanto usam as TIC no vosso dia-a-dia, quanto tempo o fazem e para quê? E como avaliam as vossas competências em TIC?

[por exemplo, estimativa de tempo/dia; acesso às TIC em casa/ na escola; usam as TIC mais para lazer/ diversão; estudar/fazer trabalhos para a escola; pesquisar informação/ aprender outras coisas que se interessam; comunicar/ trocar mensagens/ estar nas redes sociais; encontrar e comprar ou vender coisas...; e o que conseguem/ sabem fazer: web surfing; jogar online; email, chatting; tirar fotografias; fazer chamadas pela net; ouvir musica e ver filmes; criar um blog; fazer downloads; usar o office (processar/formatar textos, fazer apresentações multimédia, usar folhas de cálculo, usar bases de dados...); criar websites; programar; criar softwares; perceber/ resolver problemas de hardware...]

190
3. Quem vos influenciou ou ajudou na escolha do curso?

[por exemplo, amigos, colegas de escola, irmãos, pais (pai ou mãe), professores, professores de TIC, psicólogos de orientação vocacional, potenciais empregadores, empresas-líder na área, nacionais ou multinacionais, “gurus” da informática como Bill Gates, Steve Jobs, Mark Zuckerberg…; associações do sector, políticas e incentivos do governo e/ou de instituições de ensino superior…; ninguém; outros…]

4. Tiveram informação sobre o curso? Onde acederam a essa informação?

[por exemplo, na escola, durante o básico ou já no secundário, nas escolas profissionais ou nos centros de formação; no contacto com universidades e politécnicos que gostariam de frequentar (“o dia aberto da universidade”; visitas de estudo; mostras de cursos/ instituições de ensino superior nas escolas;…); com os professores; com os serviços de orientação da escola/ fora da escola; na comunicação social (revistas, jornais, televisão, …); na internet; nos websites do ministério com informação sobre cursos profissionais; em feiras e exposições sobre os cursos disponíveis; no contacto com profissionais e empresas da área; na experiência de estágios, part-times, voluntariado ou trabalho comunitário relacionados com área/ curso…]

5. E sobre os cursos em TICE, por exemplo, em Ciências Informáticas, em Eletrónica e Automação ou em Audiovisuais e produção dos média, o que acham destes cursos?

[por exemplo, é diferente daquilo que pensava; os cursos são difíceis; é preciso muita matemática e/ou física; é preciso ser muito bom em programação; é preciso passar muitas horas ao computador; só os nerds/ geeks é que gostam; são só rapazes; as raparigas não gostam e/ou não sabem; é preciso gostar muito/ ser obcecado por tecnologia/ informática/ eletrónica; é preciso ser autodidata/ aprender sozinho; é preciso ter já boas bases; são cursos que exigem muito trabalho, para além das aulas; é um curso/ uma área muito técnica; trabalha-se só com tecnologia e máquinas; tem-se pouco contacto com pessoas; é preciso estar sempre “em cima do acontecimento” (manter-se constantemente atualizado); é muito prático/ é preciso resolver problemas. testar soluções e encontrar alternativas; é preciso ser criativo porque tem de se “(re)inventar” soluções/ produtos; é preciso ser muito autónomo;… ainda não sei….]

6. Que coisas são importantes quando pensam na profissão/ carreira que gostariam de ter?

[por exemplo, trabalhar numa área que goste; ter um trabalho interessante; ter um trabalho desafiante; poder ser criativo; poder ser autónomo; trabalhar com pessoas; ajudar os outros; ser socialmente útil; trabalhar com tecnologia; resolver problemas técnicos; ter um bom salário/ ganhar bem; ter uma profissão com elevado estatuto; ter segurança no emprego; ter um horário flexível; ter o meu próprio negócio, poder ser empresário ou trabalhar por conta própria; poder ser independente; ter tempo para mim; ter tempo para a família; ter um trabalho pouco stressante; ter um bom ambiente de trabalho; trabalhar em boas empresas; ter boas condições de trabalho; poder viajar;…]

7. Gostariam de continuar a estudar ou de vir a trabalhar em TICE? E como é que acham que é trabalhar ou ter uma carreira em TICE?
[por exemplo, querem continuar a estudar para tirar um superior; gostavam de continuar para o ensino superior mas acham que vai ser difícil, por causa dos exames de acesso; querem continuar a estudar mas preferem um curso médio, mais prático, por exemplo um CET ou um TESP; gostavam ou precisam de começar a trabalhar logo a seguir ao curso; querem trabalhar e estudar ao mesmo tempo; querem continuar nesta área ou experimentar outra; acham que trabalhar em TICE: é fácil ou difícil encontrar trabalho/emprego; é bem ou mal pago; é exigente e complicado ou não; é interessante ou não; é stressante ou descontraido; é agradável ou maçador; é desafiante ou não; é muito competitivo ou não; é um emprego seguro/estável ou não; é um “emprego para a vida” ou não; é necessário estar sempre atualizado; dá oportunidades de promoção ou não; trabalha-se mais sozinho ou com outros/ em rede; pode trabalhar-se a partir de casa; ter uma profissão que tem um bom estatuto social; poder trabalhar em qualquer lugar do mundo; poder mudar facilmente de emprego; poder trabalhar em coisas diferentes; …].

8. Para os que não estão em cursos TICE, o que vos faria mudar de ideias, para virem a interessar-se por uma formação/carreira em TICE?
Estudo
“Opção dos jovens por percursos educativos/formativos em TICE:
Percepções, bloqueios e fatores facilitadores”

GUIÃO DE FOCUS-GROUP COM JOVENS/ALUNOS - ENSINO PÓS-SECUNDÁRIO
DE NÍVEL 5 DO QNQ – CURSOS CET E TESP

1. Objetivos do focus-group

Conhecer as percepções de jovens/alunos relativamente à formação e emprego em TICE e os principais fatores facilitadores e de bloqueio na opção por estas áreas.

2. Composição do focus-group

10 a 12 alunos do 1º ano dos cursos CET ou TESP, em particular das seguintes áreas de educação/formação: em TICE [Ciências Informáticas (481); e/ou Eletrónica e Automação (523); e/ou Audiovisuais e produção dos média (213)]; em áreas CTEM não-TICE (CNAEF 4 e 5, não incluídas nas anteriores). É essencial assegurar que o grupo de alunos participante no focus-group seja composto por ambos os sexos.

O dinamizador do focus-group deve começar por apresentar brevemente o estudo e os seus objetivos, lançar as questões para discussão e moderar o debate, dando oportunidade a todos os participantes intervenham e procurando obter informação sobre todas as questões. Para cada questão, são sugeridos alguns tópicos de discussão [em itálico], entre outros que surjam como relevantes, que não devem ser apresentados ou lidos aos participantes do focus-group. Servem apenas para ajudar o dinamizador, quando necessário, a concretizar as questões e a incentivar a discussão, lançando novas pistas para recolher opiniões e percepções dos participantes.

Sugere-se que a dinamização do focus-group, quando não realizada pela equipa do estudo, seja feita pelo representante da instituição de ensino/formação no Consórcio Maior Empregabilidade (Institutos Politécnicos) ou na Rede Maior Empregabilidade – Ensino Profissional, em estreita colaboração com os responsáveis ou docentes da área/departamentos de TICE.

A duração estimada do focus-group é de 2 horas.

3. Relatório do focus-group

O focus-group deve ser gravado, com informação e autorização prévia dos participantes. O relatório do focus-group consiste na transcrição integral do discurso de cada participante, em cada uma das suas intervenções e na ordem em que ocorreram. Em cada uma dos intervenções transcritas deverá ser identificado o respetivo participante/orador apenas com a indicação – ALUNO #1, ALUNO #2..., conforme consta da primeira página do guião.

Solicita-se o envio do relatório até ao dia 9 de Outubro 2015, para a entidade coordenadora do estudo – FORUM ESTUDANTE -, nomeadamente para os seguintes contactos: anaclaudia.valente@sapo.pt; jorge.vicente@forum.pt; irinabettencourt@gmail.com; isabel.correia@forum.pt. Para mais informações ou esclarecimento de dúvidas, deve também usar os contactos referidos.

Agradecemos, desde já, a vossa valiosa e estimada colaboração.
INSTITUIÇÃO DE ENSINO/ FORMAÇÃO

<table>
<thead>
<tr>
<th>Instituição:</th>
<th>Data do focus-group:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinamizador do focus-group/ Pessoa de contacto:</td>
<td>Email:</td>
</tr>
</tbody>
</table>

PARTICIPANTES NO FOCUS-GROUP

<table>
<thead>
<tr>
<th>ALUNO #1</th>
<th>Curso:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano de curso:</td>
<td>Idade:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
<td>Sexo:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALUNO #2</th>
<th>Curso:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano de curso:</td>
<td>Idade:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
<td>Sexo:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALUNO #3</th>
<th>Curso:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano de curso:</td>
<td>Idade:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
<td>Sexo:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALUNO #4</th>
<th>Curso:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano de curso:</td>
<td>Idade:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
<td>Sexo:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALUNO #5</th>
<th>Curso:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano de curso:</td>
<td>Idade:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
<td>Sexo:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALUNO #6</th>
<th>Curso:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano de curso:</td>
<td>Idade:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
<td>Sexo:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALUNO #7</th>
<th>Curso:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano de curso:</td>
<td>Idade:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
<td>Sexo:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALUNO #1</th>
<th>Curso:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano de curso:</td>
<td>Idade:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
<td>Sexo:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALUNO #8</th>
<th>Curso:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ano de curso:</td>
<td></td>
</tr>
</tbody>
</table>
1. Porque é que escolheram o curso em que estão?

[por exemplo, já sabiam/ sempre souberam o que querem seguir e este era o curso mais adequado; a área de formação que escolheram no secundário; as opções específicas que tiveram no secundário; o facto de terem já feito no secundário um curso de profissional ou um curso de aprendizagem nesta área; porque as médias de entrada no curso superior que queriam eram muito altas; o poder seguir para o ensino superior depois do curso; porque assim é mais fácil fazer um curso superior; o facto de ser um curso de curta duração; preferem uma formação mais prática; acham que estes cursos são mais fáceis; têm menos aulas teóricas; a matemática e/ou a física são menos exigentes; têm gosto/ interesse pela área das TICE (informática, electrónica, multimédia...); porque não são bons noutras áreas ou noutras disciplinas; gostaram da formação em TIC que já tiveram na escola; nas aulas de TIC aprenderam muito; já são bons a usar as TIC; gostavam de trabalhar logo a seguir ao curso; precisam de começar a trabalhar/a ganhar dinheiro; porque assim conseguem estudar e trabalhar ao mesmo tempo; estes cursos têm muitas saídas profissionais; pode fazer-se muita coisa e trabalhar em qualquer lado; as perspetivas de arranjar emprego são boas; estes cursos/saídas profissionais têm uma boa imagem/ são reputados; a reputação do curso/instituição de ensino; o interesse/ qualidade do programa do curso; as bolsas ou outros incentivos dados para a frequência dos cursos; ... não sabem porquê...]

2. Quem vos influenciou ou ajudou na escolha do curso?

[por exemplo, amigos, colegas de escola, irmãos, pais (pai ou mãe), professores, professores de TIC, psicólogos de orientação vocacional, potenciais empregadores, empresas-líder na área, nacionais ou multinacionais, “gurus” da informática como Bill Gates, Steve Jobs, Mark Zuckerberg...; associações do sector, políticas e incentivos do governo e/ou de instituições de ensino superior...; ninguém; outros...]

195
3. Tiveram informação sobre o curso? Onde acederam a essa informação?

[por exemplo, na escola, durante o básico ou no secundário, nas escolas profissionais ou nos centros de formação; no contacto com universidades e politécnicos (“o dia aberto da universidade”; visitas de estudo; mostras de cursos/ instituições de ensino superior nas escolas;...); com os professores; com os serviços de orientação da escola/fora da escola; na comunicação social (revistas, jornais, televisão, ...); na internet; nos websites do ministério com informação sobre cursos CET e TESP: em feiras e exposições sobre os cursos disponíveis; no contacto com profissionais e empresas da área; na experiência de estágios, part-times, voluntariado ou trabalho comunitário relacionados com área/ curso...]

4. E sobre os cursos em TICE, por exemplo, em Ciências Informáticas, em Eletrónica e Automação ou em Audiovisuais e produção dos média, o que acham destes cursos?

[por exemplo, é diferente do que pensava; os cursos são difíceis; é preciso matemática física; é preciso passar muitas horas ao computador; só os nerds/geeks é que gostam; são só rapazes; as raparigas não gostam e/ou não sabem; é preciso gostar muito/ ser interessado por informática/eletrónica; é preciso ser autodidata/ aprender sozinho; é preciso ter boas bases; são cursos que exigem muito trabalho, para além das aulas; é um curso/ uma área muito técnica; trabalha-se só com tecnologia e máquinas; tem poucos contactos com pessoas; é preciso estar sempre “em cima do acontecimento” (manter-se constantemente atualizado); é muito práctico/ é preciso resolver problemas, testar soluções e encontrar alternativas; é preciso ser criativo porque tem de se “reinventar” soluções/ produtos; é preciso ser muito autônomo;... ainda não sabem...]

5. Que coisas são importantes quando pensam na profissão/ carreira que gostariam de ter?

[por exemplo, trabalhar numa área que goste; ter um trabalho interessante; ter um trabalho desafiante; poder ser criativo; poder ser autônomo; trabalhar com pessoas; ajudar os outros; ser socialmente útil; trabalhar com tecnologia; resolver problemas técnicos; ter um bom salário/ ganhar bem; ter uma profissão com elevado estatuto; ter segurança no emprego; ter um horário flexível; ter o meu próprio negócio; poder ser empresário ou trabalhar por conta própria; poder ser independente; ter tempo para mim; ter tempo para a família; ter um trabalho pouco stressante; ter um bom ambiente de trabalho; trabalhar em boas empresas; ter boas condições de trabalho; poder viajar;...]

6. Gostariam de continuar a estudar ou de vir a trabalhar em TICE? E como é que acham que é trabalhar ou ter uma carreira em TICE?

[por exemplo, querem continuar a estudar para tirar um superior; gostavam ou precisam de começar a trabalhar logo a seguir ao curso; querem trabalhar e estudar ao mesmo tempo; querem continuar nesta área ou experimentar outra; acham que trabalhar em TICE: é fácil ou difícil encontrar trabalho/emprego; é bom ou mal pago; é exigente e complicado ou não; é interessante ou não; é stressante ou descontraído; é agradável ou maçante; é desafiante ou não; é muito competitivo ou não; é um emprego seguro/estável ou não; é um “emprego para a vida” ou não; é necessário estar sempre atualizado; dá oportunidades de promoção ou não; trabalha-se mais sozinho ou com outros/ em rede; pode trabalhar-se a partir de casa; ter uma...]

196
profissão que tem um bom estatuto social; poder trabalhar em qualquer lugar do mundo; poder mudar facilmente de emprego; poder trabalhar em coisas diferentes; ...].

7. Para os que não estão em cursos TICE, o que vos faria mudar de ideias, para virem a interessar-se por uma formação/carreira em TICE?
Estudo
“Opção dos jovens por percursos educativos/formativos em TICE:
Percepções, bloqueios e fatores facilitadores”

GUIÃO DE FOCUS-GROUP COM JOVENS/ ALUNOS - ENSINO SUPERIOR – LICENCIATURAS

1. Objetivos do focus-group

Conhecer as percepções de jovens/ alunos relativamente à formação e emprego em TICE e os
principais fatores facilitadores e de bloqueio na opção por estas áreas.

2. Composição do focus-group

10 a 12 alunos do 1º ano de licenciaturas em áreas de educação/ formação TICE [Ciências Informáticas (481); e/ou Eletrónica e Automação (523); e/ou Audiovisuais e produção dos média (213)] e em áreas CTEM não-TICE (CNAEF 4 e 5, não incluídas nas anteriores). É essencial assegurar que o grupo de alunos participante no focus-group seja composto por ambos os sexos.

O dinamizador do focus-group deve começar por apresentar brevemente o estudo e os seus objetivos, lançar as questões para discussão e moderar o debate, dando oportunidade a que todos os participantes intervenham e procurando obter informação sobre todas as questões. Para cada questão, são sugeridos alguns tópicos de discussão [em itálico], entre outros que surjam como relevantes, que não devem ser apresentados ou lidos aos participantes do focus-group. Servem apenas para ajudar o dinamizador, quando necessário, a concretizar as questões e a incentivar a discussão, lançando novas pistas para recolher as opiniões e percepções dos participantes.

Sugere-se que a dinamização do focus-group, quando não realizada pela equipa do estudo, seja feita pelo representante da instituição de ensino superior no Consórcio Maior Empregabilidade, em estreita colaboração com os responsáveis ou docentes da área/ departamentos de TICE.

A duração estimada do focus-group é de 2 horas.

3. Relatório do focus-group

O focus-group deve ser gravado, com informação e autorização prévia dos participantes. O relatório do focus-group consiste na transcrição integral do discurso de cada participante, em cada uma das suas intervenções e na ordem em que ocorreram. Em cada uma das intervenções transcritas deverá ser identificado o respetivo participante/orador apenas com a indicação – ALUNO #1, ALUNO #2…, - conforme consta da primeira página do guião.

Solicita-se o envio do relatório até ao dia 9 de Outubro 2015, para a entidade coordenadora do estudo – FORUM ESTUDANTE -, nomeadamente para os seguintes contactos: anaclaudia.valente@sapo.pt; jorge.vicente@forum.pt; irinabettencourt@gmail.com; isabel.correia@forum.pt. Para mais informações ou esclarecimento de dúvidas, deve também usar os contactos referidos.

Agradecemos, desde já, a vossa valiosa e estimada colaboração.
INSTITUIÇÃO DE ENSINO SUPERIOR

<table>
<thead>
<tr>
<th>Instituição:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data do focus-group:</td>
</tr>
<tr>
<td>Dinamizador do focus-group/ Pessoa de contacto:</td>
</tr>
<tr>
<td>Email:</td>
</tr>
</tbody>
</table>

PARTICIPANTES NO FOCUS-GROUP

ALUNO #1
- **Curso:**
- **Idade:**
- **Sexo:**
- **CNAEF do curso [a preencher pela instituição]:**

ALUNO #2
- **Curso:**
- **Idade:**
- **Sexo:**
- **CNAEF do curso [a preencher pela instituição]:**

ALUNO #3
- **Curso:**
- **Idade:**
- **Sexo:**
- **CNAEF do curso [a preencher pela instituição]:**

ALUNO #4
- **Curso:**
- **Idade:**
- **Sexo:**
- **CNAEF do curso [a preencher pela instituição]:**

ALUNO #5
- **Curso:**
- **Idade:**
- **Sexo:**
- **CNAEF do curso [a preencher pela instituição]:**

ALUNO #6
- **Curso:**
- **Idade:**
- **Sexo:**
- **CNAEF do curso [a preencher pela instituição]:**

ALUNO #7
- **Curso:**
- **Idade:**
- **Sexo:**
- **CNAEF do curso [a preencher pela instituição]:**

ALUNO #8
- **Curso:**
- **Idade:**
- **Sexo:**
- **CNAEF do curso [a preencher pela instituição]:**

ALUNO #9
- **Curso:**
1. Porque é que escolheram o curso em que estão?

[por exemplo, já sabiam/ sempre souberam o que querem seguir e este era o curso mais adequado; a área de formação que escolheram no secundário; as opções específicas que tiveram no secundário; porque tinham/ não tinham médias para entrar no curso que queriam; o gosto/ interesse pelas ciências e tecnologias ou, em particular, pelas TICE (informática, electrónica, multimédia...); porque não são bons noutras áreas ou noutras disciplinas; a formação em TIC durante o percurso escolar prévio à universidade; o nível de conhecimento que já têm no uso das TIC; o facto de sentirem confiantes relativamente às suas capacidades em TIC; a reputação do curso/ saída profissional; a reputação do curso/ instituição de ensino superior; o interesse/ qualidade do programa do curso; bolsas ou outros incentivos dados para a opção pelos cursos; as perspetivas de empregabilidade depois do curso; o interesse numa carreira futura em ciências e tecnologia ou, em particular, nas TICE;... não sabem porquê...]

2. Quem vos influenciou ou ajudou nessa escolha?

[por exemplo, amigos, colegas de escola, irmãos, pais (pai ou mãe), professores, psicólogos de orientação vocacional, as universidades e os politécnicos, potenciais empregadores, empresas-lider na área, nacionais ou multinacionais, “gurus” da informática como Bill Gates, Steve Jobs, Mark Zuckerberg...; associações do sector, políticas e incentivos do governo e/ou de instituições de ensino superior...;ninguém; outros...]

3. Tiveram informação sobre o curso? Onde acederem a essa informação?

[por exemplo, na escola secundária; no contacto com universidades e politécnicos (“o dia aberto da universidade”; visitas de estudo; mostras de cursos/ instituições de ensino superior nas escolas secundárias;...); com os professores; com os serviços de orientação da escola/ fora da escola; na comunicação social (revistas, jornais, televisão, ...); na internet; nos websites do ministério com informação sobre cursos do ensino superior; em feiras e exposições sobre os cursos disponíveis; no contacto com profissionais e empresas da área; na experiência de estágios de verão durante o secundário, em part-times, em voluntariado ou trabalho comunitário relacionados com área/ curso ...]
4. E sobre os cursos em TICE, por exemplo, em Ciências Informáticas, em Eletrónica e Automação ou em Audiovisuais e produção dos média, o que acham destes cursos?

[por exemplo, os cursos são difíceis; é preciso muita matemática e/ou física; é preciso ser muito bom em programação; é preciso passar muitas horas ao computador; só os nerds/geeks é que gostam; são só rapazes; as raparigas não gostam e/ou não sabem; é preciso gostar muito/ ser obcecado por tecnologia/informática/eletrónica; é preciso ser autodidata/aprender sozinho; é preciso ter já boas bases; é um curso/ uma área muito técnica; trabalha-se só com tecnologia e máquinas; tem-se pouco contacto com pessoas; é preciso estar sempre “em cima do acontecimento” (manter-se constantemente atualizado...); são cursos que exigem muito trabalho, para além das aulas; é muito experimental (é preciso resolver problemas, testar soluções e encontrar alternativas...); é preciso ser criativo porque tem de se “(re) inventar” novas soluções/ produtos; é preciso ser-se muito autónomo;... ainda não sabem....]

5. Que coisas são importantes quando pensam na profissão/carreira que gostariam ter?

[por exemplo, trabalhar numa área que goste; ter um trabalho interessante; ter um trabalho desafiante; poder ser criativo; poder ser autónomo; trabalhar com pessoas; ajudar os outros; ser socialmente útil; trabalhar com tecnologia; resolver problemas técnicos; ter um bom salário; ter uma profissão com elevado estatuto; ter segurança no emprego; ter um horário flexível; ter o meu próprio negócio, poder ser empresário ou trabalhar por conta própria; poder ser independente; ter tempo para mim; ter tempo para a família; ter um trabalho pouco stressante; ter um bom ambiente de trabalho; trabalhar em boas empresas; ter boas condições de trabalho; poder viajar;...]

6. E como é que acham que é trabalhar ou ter uma carreira em TICE?

[por exemplo, é fácil ou difícil encontrar trabalho/emprego; é bem ou mal pago; é exigente e complicado ou não; é interessante ou não; é desafiante ou não; é stressante ou descontraído; é agradável ou maçador; é desafiante ou não; é um emprego seguro/estável ou não; é um “emprego para a vida” ou não; é necessário estar sempre atualizado; dá oportunidades de promoção ou não; trabalha-se mais sozinho ou com outros/ em rede; pode trabalhar-se a partir de casa; ter uma profissão que tem um bom estatuto social; poder trabalhar em qualquer lugar do mundo; poder mudar facilmente de emprego; poder trabalhar em coisas diferente; ...].

7. Para os que não estão em cursos TICE, o que vos faria mudar de ideias, para virem a interessar-se por uma formação/carreira em TICE?
Anexo 5. Guião de focus-groups com diplomados desempregados em cursos de requalificação para TICE
Estudo
“Opção dos jovens por percursos educativos/formativos em TICE: Percepções, bloqueios e fatores facilitadores”

GUIÃO DE FOCUS-GROUP COM DIPLOMADOS DESEMPREGADOS - FORMAÇÃO DE REQUALIFICAÇÃO PARA TICE

1. Objetivos do focus-group

Conhecer as percepções de jovens desempregados relativamente à formação e emprego em TICE, numa perspetiva de requalificação, e os principais fatores facilitadores e de bloqueio na opção por estas áreas.

2. Composição do focus-group

8 a 10 formandos em cursos de requalificação para TICE, de iniciativa pública ou privada, nomeadamente diplomados do ensino superior provenientes das seguintes áreas de educação/formação (1) CTEM não-TICE [CNAEF 4 e 5, excluindo as Ciências Informáticas (481); Eletrónica e Automação (523); Audiovisuais e produção dos média (213)]; (2) não-CTEM (todas as áreas, à exceção das CNAEF 4 e 5), e em situação de desemprego.

O dinamizador do focus-group deve começar por apresentar brevemente o estudo e os seus objetivos, lançar as questões para discussão e moderar o debate, dando oportunidade a que todos os participantes intervenham e procurando obter informação sobre todas as questões. Para cada questão, são sugeridos alguns tópicos de discussão [em itálico], entre outros que surjam como relevantes, que não devem ser apresentados ou lidos aos participantes do focus-group. Servem apenas para ajudar o dinamizador, quando necessário, a concretizar as questões e a incentivar a discussão, lançando novas pistas para recolher as opiniões e percepções dos participantes.

A duração estimada do focus-group é de 2 horas.

3. Relatório do focus-group

O focus-group deve ser gravado, com informação e autorização prévia dos participantes. O relatório do focus-group consiste na transcrição integral do discurso de cada participante, em cada uma das suas intervenções e na ordem em que ocorreram. Em cada uma das intervenções transcritas deverá ser identificado o respetivo participante/orador apenas com a indicação – DIPLOMADO #1, DIPLOMADO #2…, - conforme consta da primeira página do guião.

Solicita-se o envio do relatório até ao dia 9 de Outubro 2015, para a entidade coordenadora do estudo – FORUM ESTUDANTE -, nomeadamente para os seguintes contactos: anaclaudia.valente@sapo.pt; jorge.vicente@forum.pt; irinabettencourt@gmail.com; isabel.correia@forum.pt. Para mais informações ou esclarecimento de dúvidas, deve também usar os contactos referidos.

Agradecemos, desde já, a vossa valiosa e estimada colaboração.
INSTITUIÇÃO/ EMPRESA

<table>
<thead>
<tr>
<th>Instituto/ Empresa:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iniciativa/ Curso de requalificação:</td>
</tr>
<tr>
<td>Data do focus-group:</td>
</tr>
<tr>
<td>Dinamizador do focus-group/ Pessoa de contacto:</td>
</tr>
<tr>
<td>Email:</td>
</tr>
</tbody>
</table>

PARTICIPANTES NO FOCUS-GROUP

<table>
<thead>
<tr>
<th>DIPLOMADO #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso de origem:</td>
</tr>
<tr>
<td>Idade:</td>
</tr>
<tr>
<td>Sexo:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIPLOMADO #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso de origem:</td>
</tr>
<tr>
<td>Idade:</td>
</tr>
<tr>
<td>Sexo:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIPLOMADO #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso de origem:</td>
</tr>
<tr>
<td>Idade:</td>
</tr>
<tr>
<td>Sexo:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIPLOMADO #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso de origem:</td>
</tr>
<tr>
<td>Idade:</td>
</tr>
<tr>
<td>Sexo:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIPLOMADO #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso de origem:</td>
</tr>
<tr>
<td>Idade:</td>
</tr>
<tr>
<td>Sexo:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIPLOMADO #6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso de origem:</td>
</tr>
<tr>
<td>Idade:</td>
</tr>
<tr>
<td>Sexo:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIPLOMADO #7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso de origem:</td>
</tr>
<tr>
<td>Idade:</td>
</tr>
<tr>
<td>Sexo:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIPLOMADO #8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curso de origem:</td>
</tr>
<tr>
<td>Idade:</td>
</tr>
<tr>
<td>Sexo:</td>
</tr>
<tr>
<td>CNAEF do curso [a preencher pela instituição]:</td>
</tr>
</tbody>
</table>

| DIPLOMADO #9 |
1. Quais as razões que vos levaram a frequentar um curso de requalificação para TICE?

[por exemplo, o facto de estarem desempregados; as poucas perspetivas/ as dificuldades de arranjar emprego na área de formação de origem; a precariedade/ instabilidade de emprego que têm ou têm tido; a incerteza relativamente aquilo que querem trabalhar; a possibilidade oferecida pelo centro de emprego onde estão registados ou que procuraram; o condicionamento da manutenção do subsídio de desemprego à frequência deste curso; a iniciativa/ procura individual de procurar uma alternativa à situação em que estão; as perspetivas de empregabilidade depois deste curso; o interesse numa carreira futura em ciências e tecnologia ou, em particular, nas TICE; a reputação do curso/ saída profissional; a reputação do curso/ instituição; o interesse/ qualidade do programa do curso; bolsas ou outros incentivos dados para a opção por estes cursos; a afinidade da formação de origem com a área das TICE; a formação em TIC durante o percurso escolar/ profissional prévio; o nível de conhecimento/ experiência que já têm no uso das TIC; o facto de sentirem conflantes relativamente às suas capacidades em TIC; já gostavam desta área; já gostavam desta área mas não a escolheram durante o percurso escolar; já gostavam desta área mas não tinham médias para prosseguir a formação escolar nesta área;... não sabem porque...]

2. Como souberam desta oportunidade e como foi o processo de candidatura/ seleção para fazer este curso?

[por exemplo, no centro de emprego; na universidade/ politécnico nomeadamente através dos gabinetes de empregabilidade ou de inserção profissional; na escola; no centro de formação profissional; com (ex) professores; com amigos, com a família, com (ex) colegas de trabalho ou escola; com serviços de orientação profissional/ aconselhamento de carreira, públicos ou privados; na comunicação social (revistas, jornais, televisão, ...); na internet; nos websites de procura de emprego; nos websites dogoverno/ ministérios ou do IEPF; em feiras e exposições sobre os cursos disponíveis/ ofertas de emprego; no contacto com profissionais e empresas da área; no trabalho/ na empresa onde trabalhavam...; candidatura espontânea; encaminhamento do serviço público de emprego para o curso; requisitos de acesso e processo de avaliação; inscrição e frequência gratuita, subsidiada, (co) financiada pelo próprio...]

3. Que coisas são importantes quando pensam na profissão/ carreira que gostariam ter?

[por exemplo, arranjar um emprego/ um trabalho; trabalhar numa área que goste; ter um trabalho interessante; ter um trabalho desafiante; poder ser criativo; poder ser autónomo; trabalhar com pessoas; ajudar os outros; ser socialmente útil; trabalhar com tecnologia; resolver problemas técnicos; ter um bom salário; ter uma profissão com elevado estatuto; ter segurança no emprego; ter um horário flexível; ter o meu próprio negócio, poder ser empresário ou trabalhar por conta própria; poder ser independente; ter tempo para mim; ter tempo para a família; ter um trabalho pouco stressante; ter um bom ambiente de trabalho; trabalhar em boas empresas; ter boas condições de trabalho; poder viajar;...]
4. E como é que acham que é trabalhar ou ter uma carreira em TICE?

[por exemplo, é fácil ou difícil encontrar trabalho/ emprego; é bem ou mal pago; é exigente e complicado ou não; é interessante ou não; é stressante ou descontraído; é agradável ou maçador; é desafiante ou não; é um emprego seguro/ estável ou não; é um “emprego para a vida” ou não; é necessário estar sempre atualizado; dá oportunidades de promoção ou não; trabalha-se mais sozinho ou com outros/ em rede; pode trabalhar-se a partir de casa; ter uma profissão que tem um bom estatuto social; poder trabalhar em qualquer lugar do mundo; poder mudar facilmente de emprego; poder trabalhar em coisas diferentes; …].
Anexo 6. Guião de focus-groups com psicólogos dos SPO das escolas
Estudo
“Opção dos jovens por percursos educativos/formativos em TICE: Percepções, bloqueios e fatores facilitadores”

GUIÃO DE FOCUS-GROUP COM PSICÓLOGOS DE ORIENTAÇÃO VOCACIONAL DAS ESCOLAS

1. Objetivos do focus-group

Conhecer as percepções dos jovens relativamente à formação e emprego em TICE e os principais fatores facilitadores e de bloqueio na opção por estas áreas, num momento decisivo do seu percurso escolar – o ensino secundário –, a partir da perspetiva dos psicólogos de orientação profissional das escolas.

2. Composição do focus-group

6 a 8 psicólogos dos Serviços de Psicologia e Orientação (SPO) de escolas secundárias, nomeadamente de escolas com ensino secundário geral e/ou profissional e de escolas profissionais vocacionadas para as áreas TICE [com cursos profissionais em Ciências Informáticas (481); e/ou Eletrónica e Automação (523); e/ou Audiovisuais e produção dos média (213)].

O dinamizador do focus-group deve começar por apresentar brevemente o estudo e os seus objetivos, lançar as questões para discussão e moderar o debate, dando oportunidade a que todos os participantes intervenham e procurando obter informação sobre todas as questões. Para cada questão, são sugeridos alguns tópicos de discussão [em itálico], entre outros que surjam como relevantes, que não devem ser apresentados ou lidos aos participantes do focus-group. Servem apenas para ajudar o dinamizador, quando necessário, a concretizar as questões e a incentivar a discussão, lançando novas pistas para recolher opiniões e percepções dos participantes.

A duração estimada do focus-group é de 2 horas.

3. Relatório do focus-group

O focus-group deve ser gravado, com informação e autorização prévia dos participantes. O relatório do focus-group consiste na transcrição integral do discurso de cada participante, em cada uma das suas intervenções e na ordem em que ocorreram. Em cada uma das intervenções transcritas deverá ser identificado o respetivo participante/orador apenas com a indicação - PSICÓLOGO #1, PSICÓLOGO #2…, - conforme consta da primeira página do guião.

Solicita-se o envio do relatório até ao dia 9 de Outubro 2015, para a entidade coordenadora do estudo – FORUM ESTUDANTE -, nomeadamente para os seguintes contactos: anaclaudia.valente@sapo.pt; jorge.vicente@forum.pt; irinabettencourt@gmail.com; isabel.correia@forum.pt. Para mais informações ou esclarecimento de dúvidas, deve também usar os contactos referidos.

Agradecemos, desde já, a vossa valiosa e estimada colaboração.
1. Os jovens no secundário estão perante várias escolhas, por vezes difíceis: os que estão no 10º ano, acabaram de optar ou pelo ensino geral ou pelo vocacional e de escolher a área de formação/curso; os que estão no 12º ano estão prestes a ter que decidir o que vão fazer a seguir: continuar a estudar ou procurar emprego; seguir para um curso superior ou para um CET/ TESP; decidir que curso querem ou podem tirar…

De acordo com a vossa experiência, o que influencia estas escolhas?

[prefereências e vocações dos jovens; percurso escolar anterior, as escolhas que fizeram e o sucesso educativo que têm; informação e conhecimento que têm das áreas/ cursos; percepções e estereótipos que têm relativamente aos cursos e às profissões/ trabalho relacionados, ou à empregabilidade na área; o seu contexto familiar, o nível de escolaridade dos pais, as profissões dos pais, o nível socioeconómico da família; as percepções que os seus pares - os amigos, os colegas de escola… fazem da escola, do estudo, das áreas …; os seus ídolos; aquilo a que aspiram, como se projetam no futuro…]

2. Como é que estes jovens encaram a possibilidade de optar/seguir por uma área de formação/ curso em TICE (informática, eletrónica, multimédia…), no secundário ou depois do secundário? O que pode facilitar ou bloquear essa opção?
[a área de formação que escolheram no secundário; as opções específicas que tiveram no secundário; a dificuldade em disciplinas como a matemática ou a física; as médias para entrar nestes cursos; a formação em TIC durante o percurso escolar; o nível de conhecimento que já têm no uso das TIC; o facto de se sentirem confiantes relativamente às suas capacidades em TIC; o gosto/ interesse por tudo o que é tecnológico; a forma mais lúdica do que de trabalho com que usam/ encaram as TIC; o conhecimento e a atitude dos pais relativamente às TIC e ao trabalho nestas áreas; as percepções e estereótipos que eles próprios e os seus pares têm relativamente aos cursos e às profissões/ trabalho em TICE; as perspetivas de empregabilidade depois do curso;...]

3. Quem é que influencia mais essa escolha (ou não escolha) pelas TICE?

[por exemplo, amigos, colegas de escola, irmãos, pais (pai ou mãe), a escola, os professores, os professores de TIC, os psicólogos de orientação vocacional, potenciais empregadores, empresas-leader na área, nacionais ou multinacionais, “gurus” da informática como Bill Gates, Steve Jobs, Mark Zuckerberg...; associações do sector, políticas e incentivos do governo e/ou de instituições de ensino superior...]

4. Qual é normalmente o papel dos SPO das escolas nessa fase/ escolha?

[na informação dos alunos/ em dar a conhecer os cursos e as saídas profissionais possíveis; na sua sensibilização/ mobilização para a área; na informação e sensibilização dos pais/ encarregados de educação; no despiste de vocações e na orientação das escolhas; no aconselhamento de percursos e alternativas; no acompanhamento dos alunos mais indecisos...]

5. O que vos parece que pode ou deve ser feito, nomeadamente ao nível dos serviços de orientação das escolas, se quisermos mobilizar mais jovens, e particularmente as raparigas, para formações e carreiras em TICE?
Anexo 7. Guião de focus-groups com professores de TIC/ Informática
Estudo
“Opção dos jovens por percursos educativos/formativos em TICE: Percepções, bloqueios e fatores facilitadores”

GUIÃO DE FOCUS-GROUP COM PROFESSORES DE TIC/ INFORMÁTICA

1. Objetivos do focus-group

Conhecer as percepções dos jovens relativamente à formação e emprego em TICE e os principais fatores facilitadores e de bloqueio na opção por estas áreas, num momento decisivo do seu percurso escolar – o ensino secundário –, a partir da perspetiva dos professores de informática das escolas.

2. Composição do focus-group

6 a 8 professores de informática de escolas secundárias, nomeadamente de escolas com ensino secundário geral e/ou profissional e de escolas profissionais vocacionadas para as áreas TICE [com cursos profissionais em Ciências Informáticas (481); e/ou Eletrónica e Automação (523); e/ou Audiovisuais e produção dos média (213)].

O dinamizador do focus-group deve começar por apresentar brevemente o estudo e os seus objetivos, lançar as questões para discussão e moderar o debate, dando oportunidade a que todos os participantes intervenham e procurando obter informação sobre todas as questões. Para cada questão, são sugeridos alguns tópicos de discussão [em itálico], entre outros que surjam como relevantes, que não devem ser apresentados ou lidos aos participantes do focus-group. Servem apenas para ajudar o dinamizador, quando necessário, a concretizar as questões e a incentivar a discussão, lançando novas pistas para recolher opiniões e percepções dos participantes.

A duração estimada do focus-group é de 2 horas.

3. Relatório do focus-group

O focus-group deve ser gravado, com informação e autorização prévia dos participantes. O relatório do focus-group consiste na transcrição integral do discurso de cada participante, em cada uma das suas intervenções e na ordem em que ocorreram. Em cada uma das intervenções transcritas deverá ser identificado o respetivo participante/orador apenas com a indicação - PROFESSOR #1, PROFESSOR #2…, - conforme consta da primeira página do guião.

Solicita-se o envio do relatório até ao dia 9 de Outubro 2015, para a entidade coordenadora do estudo — FORUM ESTUDANTE -, nomeadamente para os seguintes contactos: anaclaudia.valente@sapo.pt; jorge.vicente@forum.pt; irinabettencourt@gmail.com; isabel.correia@forum.pt. Para mais informações ou esclarecimento de dúvidas, deve também usar os contactos referidos.

Agradecemos, desde já, a vossa valiosa e estimada colaboração.
Dinamizador do FG/ Pessoa de contacto:
Email:
Data do focus-group:

PARTICIPANTES NO FOCUS-GROUP

PROFESSOR #1
Escola:

PROFESSOR #2
Escola:

PROFESSOR #3
Escola:

PROFESSOR #4
Escola:

PROFESSOR #5
Escola:

PROFESSOR #6
Escola:

PROFESSOR #7
Escola:

PROFESSOR #8
Escola:

1. Apesar do enorme interesse dos jovens pelas TIC, e da facilidade com que as usam, há cada vez menos jovens a optar/seguir por uma área de formação/ curso em TICE (informática, eletrónica, multimédia...), sobretudo depois do secundário.

De acordo com a vossa experiência, a que se deve esta tendência?
[a dificuldade em disciplinas como a matemática ou a física; as médias para entrar nestes cursos; a forma mais lúdica do que de trabalho com que usam/encaram as TIC; o desconhecimento do que é estudar ou trabalhar nestas áreas; as percepções e estereótipos que eles próprios e os seus pares têm relativamente aos cursos e às profissões/trabalho em TICE; o facto de as raparigas não quererem estas áreas, acharem que é mais para rapazes; o conhecimento e a atitude dos pais relativamente às TIC e ao trabalho nestas áreas; ...]

2. E o que motiva aqueles jovens que querem ou gostavam de optar/seguir por uma área de formação/curso em TICE, no secundário ou depois do secundário? O que pode facilitar ou bloquear essa opção?
[a área de formação que escolheram no secundário; as opções específicas que tiveram no secundário; a dificuldade em disciplinas como a matemática ou a física; as médias para entrar nestes cursos; a formação em TIC durante o percurso escolar; o nível de conhecimento que já têm no uso das TIC; o facto de se sentirem confiantes relativamente às suas capacidades em TIC; o gosto/interesse por tudo o que é tecnológico; a forma mais lúdica do que de trabalho...]

213
com que usam/encaram as TIC; o conhecimento e a atitude dos pais relativamente às TIC e ao trabalho nestas áreas; as percepções e estereótipos que eles próprios e os seus pares têm relativamente aos cursos e às profissões/trabalho em TICE; as perspetivas de empregabilidade depois do curso;...]

3. Quem é que influencia mais essa escolha (ou não escolha) pelas TICE?

[por exemplo, amigos, colegas de escola, irmãos, pais (pat ou mãe), a escola, os professores, os professores de TIC, os psicólogos de orientação vocacional, potenciais empregadores, empresas-líder na área, nacionais ou multinacionais, “gurus” da informática como Bill Gates, Steve Jobs, Mark Zuckerberg...; associações do sector, políticas e incentivos do governo e/ou de instituições de ensino superior...]

4. E qual o papel que as “TIC na escola” têm na mobilização/preparação dos jovens para futuras formações e carreiras em TICE?

[o uso das TIC na pedagogia; o ensino das TIC/TIC no curriculum; os conteúdos que se ensinam em TIC; o ensino da programação nas escolas; as TIC no básico e/ou no secundário; a formação e a atitude dos professores relativamente às TIC e ao seu uso; os recursos TIC existentes nas escolas; a orientação/aposta das escolas nas áreas de Ciências e Tecnologias ou, em particular, nas TICE; a formação e a motivação dos professores de TIC; a importância atribuída à disciplina de TIC; as iniciativas ou os projetos da escola nestas áreas; a ligação a politécnicos e universidades; no contacto com profissionais e empresas da área; na ligação às associações do sector; na experiência de estágios, visitas de estudo, voluntariado ou trabalho comunitário relacionados com área/curso...]

5. O que vos parece que pode ou deve ser feito, nomeadamente ao nível das escolas e do ensino, se quisermos mobilizar mais jovens, e particularmente as raparigas, para formações e carreiras em TICE?
Anexo 8. Guião de focus-groups com pais/ encarregados de educação
Estudo
“Opção dos jovens por percursos educativos/formativos em TICE: Percepções, bloqueios e fatores facilitadores”

GUIÃO DE FOCUS-GROUP COM PAIS/ ENCARREGADOS DE EDUCAÇÃO

1. Objetivos do focus-group

Conhecer as percepções dos jovens/ alunos relativamente à formação e emprego em TICE e os principais fatores facilitadores e de bloqueio na opção por estas áreas, num momento decisivo do seu percurso escolar – o ensino secundário –, a partir da perspetiva dos pais/ encarregados de educação.

2. Composição do focus-group

6 a 8 pais/ encarregados de educação de alunos de escolas secundárias, nomeadamente de escolas com ensino secundário geral e/ou profissional e de escolas profissionais vocacionadas para as áreas TICE [com cursos profissionais em Ciências Informáticas (481); e/ou Eletrónica e Automação (523); e/ou Audiovisuais e produção dos média (213)].

O dinamizador do focus-group deve começar por apresentar brevemente o estudo e os seus objetivos, lançar as questões para discussão e moderar o debate, dando oportunidade a que todos os participantes intervenham e procurando obter informação sobre todas as questões. Para cada questão, são sugeridos alguns tópicos de discussão [em itálico], entre outros que surjam como relevantes, que não devem ser apresentados ou lidos aos participantes do focus-group. Servem apenas para ajudar o dinamizador, quando necessário, a concretizar as questões e a incentivar a discussão, lançando novas pistas para recolher opiniões e percepções dos participantes.

A duração estimada do focus-group é de 2 horas.

3. Relatório do focus-group

O focus-group deve ser gravado, com informação e autorização prévia dos participantes. O relatório do focus-group consiste na transcrição integral do discurso de cada participante, em cada uma das suas intervenções e na ordem em que ocorreram. Em cada uma das intervenções transcritas deverá ser identificado o respetivo participante/orador apenas com a indicação – PAIS/EE #1, PAIS/ EE #2…, conforme consta da primeira página do guião.

Solicita-se o envio do relatório até ao dia 9 de Outubro 2015, para a entidade coordenadora do estudo – FORUM ESTUDANTE -, nomeadamente para os seguintes contactos: anaclaudia.valente@sapo.pt; jorge.vicente@forum.pt; irinabettencourt@gmail.com; isabel.correia@forum.pt. Para mais informações ou esclarecimento de dúvidas, deve também usar os contactos referidos.

Agradecemos, desde já, a vossa valiosa e estimada colaboração.
Dinamizador do FG/ Pessoa de contacto:

Email:

Data do focus-group:

PARTICIPANTES NO FOCUS-GROUP

PAIS/ EE #1

<table>
<thead>
<tr>
<th>Educando</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ano de escolaridade:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escola:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAIS/ EE #2

<table>
<thead>
<tr>
<th>Educando</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ano de escolaridade:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escola:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAIS/ EE #3

<table>
<thead>
<tr>
<th>Educando</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ano de escolaridade:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escola:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAIS/ EE #4

<table>
<thead>
<tr>
<th>Educando</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ano de escolaridade:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escola:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAIS/ EE #5

<table>
<thead>
<tr>
<th>Educando</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ano de escolaridade:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escola:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAIS/ EE #6

<table>
<thead>
<tr>
<th>Educando</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ano de escolaridade:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escola:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAIS/ EE #7

<table>
<thead>
<tr>
<th>Educando</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ano de escolaridade:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escola:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAIS/ EE #8

<table>
<thead>
<tr>
<th>Educando</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ano de escolaridade:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escola:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Os vossos filhos/educandos, estando no secundário, estão perante várias escolhas, por vezes difíceis: os que estão no 10º ano, acabaram de optar ou pelo ensino geral ou pelo vocacional e de escolher a área de formação/curso; os que estão no 12º ano estão prestes a ter que decidir o que vão fazer a seguir: continuar a estudar ou procurar emprego; seguir para um curso superior ou para um CET/TESP; decidir que curso querem ou podem tirar…

Como pais/encarregados de educação, como têm influenciado ou ajudado os vossos filhos/educandos nestas escolhas?

[por exemplo, optarem por uma área que dá acesso a mais cursos; escolherem uma área onde sabem que eles são bons/têm boas notas; fazerem uma coisa que gostem/têlam interesse; seguirem a área/profissão do pai ou da mãe; escolherem uma área/curso que os pais gostariam de ter seguido; ter perspetivas de empregabilidade; escolherem uma área/curso em que possam ser bem-sucedidos – ter uma carreira, ganhar bem,…; poderem aceder a profissões de prestígio; dar-lhes a conhecer o que é trabalhar nessas áreas; eles já sabem o que querem seguir; sempre souberam o que querem seguir; …]

2. E encorajam ou encorajariam os vossos filhos/educandos a optar/seguir para um curso em TICE (informática, eletrónica, multimédia…)? Porquê?

[por exemplo, é preciso passar muitas horas ao computador; são só rapazes; as raparigas não gostam; é preciso gostar muito ser obcecado por tecnologia/informática/eletrónica; é um curso/uma área muito técnica; trabalha-se só com tecnologia e máquinas; tem-se pouco contacto com pessoas; é um trabalho muito sedentário; estes cursos têm muitas saídas profissionais; pode fazer-se muita coisa e trabalhar em qualquer lado; as perspetivas de arranjar emprego são boas; estes cursos/saídas profissionais têm uma boa imagem/são reputados; …]

3. Quem é que acham que também influencia essa escolha (ou não escolha) pelas TICE?

[por exemplo, amigos, colegas de escola, irmãos, a escola, os professores, os professores de TIC, os psicólogos de orientação vocacional, potenciais empregadores, empresas-líder na área, nacionais ou multinacionais, “gurus” da informática como Bill Gates, Steve Jobs, Mark Zuckerberg…; associações do sector, políticas e incentivos do governo e/ou de instituições de ensino superior…]

4. E como é que acham que é trabalhar ou ter uma carreira em TICE?

[por exemplo, é fácil ou difícil encontrar trabalho/emprego; é bem ou mal pago; é um emprego seguro/estável ou não; é um “emprego para a vida” ou não; dá oportunidades de promoção ou não; pode ter uma profissão com um bom estatuto social; pode trabalhar em qualquer lugar do mundo; poder mudar facilmente de emprego; pode trabalhar em grandes empresas/boas empresas; há trabalho em Portugal…].

5. O que vos parece que pode ou deve ser feito se quisermos mobilizar mais jovens, e particularmente as raparigas, para formações e carreiras em TICE?
Anexo 9. Guião de experiências educativas/ formativas de sucesso em TICE
Estudo
“Opção dos jovens por percursos educativos/formativos em TICE:
Percepções, bloqueios e fatores facilitadores”

GUIÃO DE EXPERIÊNCIAS EDUCATIVAS/FORMATIVAS DE SUCESSO EM TICE

1. Objetivos
Identificar e descrever experiências formativas/educativas de sucesso na área das TICE, implementadas pela instituição de ensino/formação.

2. Critérios de identificação e seleção de experiências educativas/formativas de sucesso em TICE

Considere experiências, projetos, iniciativas ou ações/ cursos de educação e formação implementados pela sua instituição nos últimos três anos, dirigidos às áreas TICE [nomeadamente a Ciências Informáticas (481); e/ou Eletrónica e Automação (523); e/ou Audiovisuais e produção dos média (213)], tendo em conta pelo menos um dos seguintes critérios:

(2) **Captação de alunos**: i.e. que mobilizaram mais alunos para a educação/ formação em TICE, quer jovens em fase de decisão do curso, quer de jovens desempregados na perspetiva de requalificação, e/ou dando particular atenção à dimensão de gênero (mobilização das raparigas para estas áreas).

(3) **Sucesso educativo**: i.e. que permitiram melhorar o desempenho dos alunos em educação/ formação em TICE (p.ex. aumentaram os níveis de aprovação e as notas dos alunos; reduziram as desistências; incentivaram a progressão dos estudos para ciclos posteriores, ...)

(4) **Promoção da empregabilidade**: i.e. que garantiram ou melhoraram a inserção profissional dos jovens/ alunos (p.ex. através de maior ligação às empresas, realização de estágios, acesso a certificações internacionais, envolvimento de associações setoriais, requalificação de diplomados desempregados para as TICE ...)

3. Descrição das experiências educativas/formativas de sucesso em TICE

Descreva pelo menos 1 experiência formativa/educativa de sucesso em TICE que tenha sido implementada pela sua instituição, em parceria ou não com outras entidades. Caso existam mais experiências deste tipo que gostaria de reportar, deve copiar os campos de descrição constantes no guião. Para cada campo, são sugeridos alguns tópicos de descrição [em itálico], entre outros que considere relevantes, para os quais gostaríamos de obter informação. Caso necessite de mais espaço para escrever, aumente a caixa de texto.

Sugere-se que o preenchimento deste guião seja realizado pelos, ou em estreita colaboração com, os responsáveis ou docentes da área/ departamentos de TICE.

Solicita-se **o envio do guião preenchido até ao dia 9 de Outubro 2015**, para a entidade coordenadora do estudo – FORUM ESTUDANTE -, nomeadamente para os seguintes contactos: anaclaudia.valente@sapo.pt; jorge.vicente@forum.pt; irinabettencourt@gmail.com; isabel.correia@forum.pt. Para mais informações ou esclarecimento de dúvidas, deve também usar os contactos referidos.
Agradecemos, desde já, a vossa valiosa e estimada colaboração.
INSTITUIÇÃO DE ENSINO/ FORMAÇÃO

Instituição:
Pessoa de contacto:
Email:
Data:

EXPERIÊNCIA #1

Designação:
Data de início: Data de fim: Em curso:
Departamento/ área responsável:

1. Descreva sucintamente em que consiste (ou consistiu) a experiência:
 [principais objetivos; ações que foram implementadas; público-alvo; colaboração de outras áreas/ departamentos da instituição; parceiros externos envolvidos; outros dados que considere relevantes...]

2. Descreva sucintamente os principais resultados obtidos:
 [número e características dos abrangidos face ao público-alvo; resultados obtidos relativamente aos objetivos previstos, nomeadamente no que respeita a: captação de alunos, i.e. que mobilizaram mais alunos para a educação/ formação em TICE; e/ou sucesso educativo, i.e. que permitiram melhorar o desempenho dos alunos em educação/ formação em TICE; e/ou promoção da empregabilidade, i.e. que garantiram ou melhoraram a inserção profissional dos alunos; outros resultados que considere relevantes..., fatores que foram/ são críticos no sucesso da experiência]

3. Indique se há expectativas ou iniciativas de continuidade e/ou melhoria desta experiência e em que consistem:

[caso pretenda reportar outras experiências, copie para cada uma - EXPERIÊNCIA #2, EXPERIÊNCIA #3... - os campos do guio]
Anexo 10. Guião de boas práticas na mobilização de jovens para as áreas de TICE
Estudo
“Opção dos jovens por percursos educativos/formativos em TICE: Percepções, bloqueios e fatores facilitadores”

GUIÃO DE BOAS PRÁTICAS NA MOBILIZAÇÃO DE JOVENS PARA AS ÁREAS DE TICE

1. Objetivos
Identificar e descrever boas práticas na sensibilização e mobilização dos jovens para a escolha de educação/formação e carreiras em TICE.

2. Critérios de identificação e seleção de boas práticas
Considere experiências, projetos, iniciativas ou ações implementadas pela sua instituição, nos últimos três anos, dirigidos à sensibilização, mobilização e orientação dos jovens para as áreas TICE [nomeadamente em Ciências Informáticas (481); e/ou Eletrónica e Automação (523); e/ou Audiovisuais e produção dos média (213)], tendo em conta pelo menos um dos seguintes critérios:

(4) Informação dos técnicos relativamente às áreas TICE: i.e. que aumentaram ou melhoraram a informação disponibilizada aos técnicos de orientação vocacional ou profissional sobre as oportunidades de educação, formação e emprego em TICE.

(5) Reforço, inovação e eficácia das práticas/recursos usados: i.e. que criaram novos recursos ou melhoraram a eficácia das ações de comunicação e sensibilização dos jovens para as áreas TICE; que reforçaram o serviço de orientação vocacional ou profissional disponibilizado, especificamente dirigido às áreas TICE.

(6) Captação de alunos: i.e. que mobilizaram mais alunos para educação, formação e carreiras em TICE, nomeadamente dando particular atenção à dimensão de género (mobilização das raparigas para estas áreas).

3. Descrição das boas práticas
Descreva pelo menos 1 boa prática que tenha sido implementada pela sua instituição, em parceria ou não com outras entidades. Caso existam mais práticas deste tipo que gostaria de reportar, deve copiar os campos de descrição constantes no guión. Para cada campo, são sugeridos alguns tópicos de descrição [em itálico], entre outros que considere relevantes, para os quais gostaríamos de obter informação. Caso necessite de mais espaço para escrever, aumente a caixa de texto.

Sugere-se que o preenchimento deste guión seja realizado pelos serviços de psicologia e orientação, gabinetes de empregabilidade ou gabinetes de saídas profissionais, em estreita colaboração com a área/departamento de TICE.

Solicita-se o envio do guión até ao dia 9 de Outubro 2015, para a entidade coordenadora do estudo – FORUM ESTUDANTE -, nomeadamente para os seguintes contactos: anaclaudia.valente@sapo.pt; jorge.vicente@forum.pt; irinbettencourt@gmail.com; isabel.correia@forum.pt. Para mais informações ou esclarecimento de dúvidas, deve também usar os contactos referidos.

Agradecemos, desde já, a vossa valiosa e estimada colaboração.
PRÁTICA #1

Designação:

Data de início:

Data fim:

Em curso:

Departamento/área responsável:

1. **Descreva sucintamente em que consiste (ou consistiu) a prática:**

 [principais objetivos; ações que foram implementadas; público-alvo; colaboração de outras áreas/departamentos da instituição; parceiros externos envolvidos; outros dados que considere relevantes...]

2. **Descreva sucintamente os principais resultados obtidos:**

 [número e características dos abrangidos face ao público-alvo; resultados obtidos relativamente aos objetivos previstos, nomeadamente no que respeita à informação dos técnicos relativamente à área TICE; e/ou reforço, inovação e eficácia das práticas/recursos usados na comunicação, sensibilização e orientação dos jovens, especificamente dirigidos às áreas TICE; e/ou captação de alunos, i.e. que mobilizaram mais alunos para a educação, formação e carreiras em TICE, nomeadamente raparigas; outros resultados que considere relevantes...; fatores que foram/são críticos no sucesso da prática]

3. **Indique se há expectativas ou iniciativas de continuidade e/ou melhoria desta prática e em que consistem:**

 [caso pretenda reportar outras boas práticas, copie para cada uma – PRÁTICA #2, PRÁTICA #3... - os campos do guia]
Anexo 11. Instituições de Ensino e Formação participantes no estudo

Ensino Superior

Instituto Politécnico de Beja
Instituto Politécnico de Leiria
Instituto Politécnico de Setúbal
Instituto Politécnico de Tomar
Instituto Politécnico de Viana do Castelo
Universidade de Coimbra
Universidade de Trás-os-Montes e Alto Douro
Universidade do Algarve
Universidade Portucalense Infante D. Henrique

CET e TESP

Centro de formação Profissional da Indústria da Eletrónica, Telecomunicações, Energias e Sistemas de Informação (CINEL)
Instituto Politécnico de Leiria
Instituto Politécnico de Setúbal
Instituto Politécnico de Viana do Castelo

Ensino Secundário Profissional

Agrupamento de Escolas de Padre Benjamim Salgado
Agrupamento de Escolas Marinha Grande Nascente – Escola Secundária de Pinhal do Rei
Agrupamento de Escolas nº2 de Évora
Centro de formação Profissional da Indústria da Eletrónica, Telecomunicações, Energias e Sistemas de Informação (CINEL)
Escola Europeia de Ensino Profissional
Escola Profissional Amar Terra Verde
Escola Profissional de Aveiro
Escola Profissional de Cortegaça
Escola Profissional de Espinho
Escola Profissional de Matosinhos
Escola Profissional de Valongo
Escola Profissional Gustave Eiffel
Escola Secundária com 3º Ciclo de Pinhal do Rei
Escola Técnica Profissional da Moita
Escola Tecnológica e Profissional da Zona do Pinhal

Ensino Secundário Geral

Agrupamento de Escolas de Padre Benjamim Salgado
Agrupamento de Escolas Professor Ruy Luís Gomes
Requalificação para TICE de diplomados desempregados

Academia de Código
Centro de formação Profissional da Indústria da Eletrónica, Telecomunicações, Energias e Sistemas de Informação (CINEL) – Projeto FIT4JOBS
Instituto de Emprego e Formação Profissional (IEFP I.P.) – Instituto Politécnico de Setúbal
Instituto de Emprego e Formação Profissional (IEFP I.P.) – Universidade Lusófona