Tristel Duo

TECHNISCHES DOSSIER: WIRKUNGSSPEKTRUM

Tristel Duo ist innerhalb von 30 Sekunden vollumfänglich wirksam gemäß allen auf europäischer Ebene geforderten Prüfungen (EN 14885:2022).

QUANTITATIVER SUSPENSIONSVERSUCH		PRAXISNAHER TEST				
PHASE 2, 1		PHASE 2, 2				
NORM	PRÜFORGANISMUS	NORM	PRÜFORGANISMUS			
SPORIZID						
EN 17126	Bacillus cereus	(noch nicht definiert)				
	Bacillus subtilis					
MYKOBAKTERIZID						
EN 14348	Mycobacterium avium	(noch nicht definiert)				
LIV 14340	Mycobacterium terrae					
VIRUZID						
EN 14476	Adenovirus Typ 5	(noch nicht definiert)				
	Murines Norovirus					
	Poliovirus Typ 1					
FUNGIZID						
EN 13624	Candida albicans	EN 16615	Candida albicans			
21110021	Aspergillus brasiliensis					
BAKTERIZID						
EN 13727	Enterococcus hirae	EN 16615	Enterococcus hirae			
	Pseudomonas aeruginosa		Pseudomonas aeruginosa			
	Staphylococcus aureus		Staphylococcus aureus			

Tristel Duo ist in der VAH-Desinfektionsmittelliste und im Expertisenverzeichnis der ÖGHMP gelistet.

Tristel Duo erfüllt die Anforderungen zur Deklaration viruzid PLUS.

¹ Babb JR, Bradely CR & Ayliffe GAJ

² Griffiths et al. (J. of Hosp. Inf. 1998 38:183-92)

^{*} Eine repräsentative Probe der Tristel Chlordioxid-Chemie wurde gemäß EN 14476:2013+A2:2019 mit einer Konzentration von 20 ppm getestet. Tristel Duo hat eine höhere Konzentration bei Verwendung.

ZUSÄTZLICHE TESTUNGEN

QUANTITATIVER SUSPENSIONSVERSUCH		PRAXISNAHER TEST				
PHASE 2, 1		PHASE 2, 2				
NORM	PRÜFORGANISMUS	NORM	TESTORGANISMUS			
SPOREN						
EN 17126	Clostridioides difficile					
EN 13704	Bacillus cereus	prEN 16615	Clostridioides difficile			
i.A.a. Publikation ¹	Bacillus subtilis var. niger					
MYKOBAKTERIEN						
	Mycobacterium avium	EN 16615	Mycobacterium avium			
VALL 0015			Mycobacterium terrae			
VAH 2015		5111050	Mycobacterium avium			
	Mycobacterium terrae	EN 14653	Mycobacterium terrae			
	VIR	REN				
			Adenovirus Typ 5			
	Adenovirus Typ 5		Murines Norovirus			
		DVV 2012	Murines Parvovirus (MVM)			
	Murines Norovirus		Polyomavirus SV40			
			Vacciniavirus			
	Murines Parvovirus (MVM)		Adenovirus Typ 5			
DVV/RKI (2014)	(MVM)	EN 16615	Bovines Coronavirus			
, , ,	Poliovirus Typ 1		Murines Norovirus			
			Polyomavirus SV40			
		ASTM E1053-02	Adenovirus Typ 5			
	Polyomavirus SV40		Felines Calicivirus			
			Hepatitis-B-Virus (HBV)			
	Vacciniavirus		Herpes-simplex-Virus Typ 1 (HSV-1)			
			Humanes Immundefizienz- Virus (HIV)			
	Influenza-A-Virus (H1N1)		Influenza-A-Virus (H1N1)			
EN 14476			Poliovirus Typ 1			
LIV IIII/O	SARS-CoV-2*	Simulated-use Test	Himanes Papillomavirus (HPV), Typ 16			
			Himanes Papillomavirus (HPV), Typ 18			
	HEFEN	/PILZE				
VAH 2015	Candida albicans	VAH 2015	Candida albicans			
	Aspergillus sydowii	EN 16615	Aspergillus brasiliensis			
		EN 14562	Aspergillus brasiliensis			
EN 13624			Candida albicans			
EIN IOUZ4	Fusarium solani		Candida auris			
		EN 13697	Candida albicans			
		AOAC 955.17	Candida albicans			

ZUSÄTZLICHE TESTUNGEN

QUANTITATIVER SUSPENSIONSVERSUCH		PRAXISNAHER TEST				
PHASE 2, 1		PHASE 2, 2				
NORM	PRÜFORGANISMUS	NORM	PRÜFORGANISMUS			
BAKTERIEN						
	Enterococcus hirae	VAH 2015	Enterococcus hirae			
			Pseudomonas aeruginosa			
			Staphylococcus aureus			
	Pseudomonas aeruginosa	EN 16615	Gardnerella vaginalis			
VAH 2015			Methicillin-resistenter Staphylococcus aureus (MRSA)			
			Neisseria gonorrhoeae			
			Proteus vulgaris			
			Streptococcus agalactiae			
	Staphylococcus aureus		Streptococcus pyogenes			
			Enterococcus hirae			
	Methicillin-resistenter Staphylococcus aureus (MRSA)	EN 13697	Escherichia coli			
			Pseudomonas aeruginosa			
			Staphylococcus aureus			
		EN 14561	Carbapenem-resistente Klebsiella pneumoniae (CRKP)			
			Enterococcus hirae			
EN 13727			ESBL-bildende Klebsiella pneumoniae			
			Methicillin-resistenter Staphylococcus aureus (MRSA)			
			Multiresistente Acinetobacter baumannii (MDRAB)			
			Pseudomonas aeruginosa			
			Staphylococcus aureus			
			Vancomycin-resistenter Enterococcus faecium (VREFm)			
PROTOZOEN						
(Benutzerdefiniert)	Zysten von Acanthamoeba castellanii					

WIRKUNGSWEISE

Das Tristel Duo nutzt Tristels proprietäre Technologie auf Basis von **Chlordioxid** (CIO₂), ein gut dokumentiertes und hochwirksames Biozid.

Chlordioxid ist ein starkes Oxidationsmittel, dessen keimtötende Eigenschaften bekannt sind. Seine biozide Wirksamkeit beruht auf dem Austausch von Elektronen und somit auf chemischen Veränderungen auf molekularer Ebene. Es kann die in den Zellmembranen von Pilzen und Bakterien enthaltenen Lipide und Proteine oxidieren, was die Membranintegrität schädigt und letztlich zum Zelltod führt. Chlordioxid ist außerdem in der Lage, in Zellen einzudringen und durch seine oxidative Wirkungsweise Nukleinsäuren abzubauen. Ähnliche Mechanismen sind verantwortlich für die Fähigkeit von Chlordioxid, Viruspartikel zu inaktivieren. Durch die oxidative Wirkungsweise können Mikroorganismen keine Resistenz gegen Chlordioxid aufbauen.

Erstellt von: Tristel Solutions Limited, Unit 1b, Lynx Business Park, Fordham Road, Snailwell, Cambridgeshire, CB8 7NY, UK T +44 (0) 1638 721500 - E mail@tristel.com - W www.tristel.com

Deutschland, Österreich: Tristel GmbH, Karl-Marx-Allee 90A, 10243 Berlin,
Deutschland - T +49 (0)30 54844226 - F +49 (0)30 54819232
E deutschland@tristel.com - W www.tristel.de

Schweiz: Tristel AG, Sandgrube 29, 9050 Appenzell, Schweiz T +41 (0)71 5670658 - E schweiz@tristel.com

Information en zu Tristels Patenten unter: http://www.our-patents.info/tristel Copyright @ Tristel Solutions - Mkt-Mic-476 - 02/MAY/2024 - V6