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Abstract

In this study, we present the framework to analyze and compare the performance of
different parts of code. The work of the framework is based on the wall-time mea-
surements and statistical analysis of the obtained results. Wall-time is most relevant
metrics of code efficiency but difficult to measure reliably so statistical analysis was
used to refine and check results. This framework was used to analyze performance
of various implementations of threads and mutexes on several different platforms
with x86 and ARM CPUs. In the future, the framework will be used to study other
low and high-level concurrent APIs. We are currently working on performance of
the thread-safe queues.
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Chapter 1

Introduction

The data volumes to process and the complexity of the corresponding algorithms
are constantly increasing. At the same time, the performance of the single processor
(CPU) in the last decade almost does not increase [1, Hennessy, 2013]. Today, instead
of increasing productivity of the CPU, the number of the CPUs increases – dual-core,
quad-core, or larger. Therefore, one of the main ways of effective solution of large-
scale tasks is the use of parallel computing technologies[Boyd-Wickizer et al., 2010].
When the task is performed sequentially, only one core is used, while others are
idle. Parallel computing allows to speed up the solution of computational tasks,
maximizing the use of resources of computing systems, in particular - processors.

Today concurrency is used in various spheres. For example, in the cloud com-
pute instances – containers of the resources – are small. So, a little web app is basi-
cally a concurrent app. If it designed well, you can increase the number of servers
to work with more customers or to change your server to more efficient which can
lead to loss of information, databases, etc. To create an efficient desktop app, you
also need to deal with concurrency because every CPU is dual, quad or more cores
now. The same story with mobile development, the latest flagships have dual or
more cores too. Xbox 360, Sony’s PS4 are also multicore systems,

To talk about the effectiveness of the application of certain methods of increas-
ing productivity and optimization, we need somehow measure the increase in effi-
ciency. One of the main performance metrics is latency – time to perform a specific
task [Hennessy, 2013]. The best criterion is the so-called wall-time – the real exe-
cution time measured independently of the clock processor[Hennessy, 2013]. More
accessible but less relevant is processor time – the number of processor counts – the
number of executed commands, the number of accesses to memory, cache misses,
etc.

Due to the importance of the measurement of productivity, there are many rel-
evant tools - profilers, APIs to access processor performance counters and operat-
ing systems counters. Profiles such as perf (Linux) [3], MS Windows Performance
Toolkit (Windows) [4], VTune (Windows, Linux) [5], allow getting runtime and other
metrics for individual functions or even smaller parts of the program, giving recom-
mendations for improving programs. APIs to access counters, such as the Perfor-
mance Application Programming Interface (Linux) [Dongarra et al., 2001, Terpstra
et al., 2010], MS Windows Performance Counters [6], Processor Counter Monitor
(Linux, Windows) [7], allows measurements to be made directly in the code.

However, because of the great complexity of modern computer systems, mea-
surement analysis itself is a complex task – computational times are not directly
reproducible. This is due to many factors: multitasking at the operating system
level [A. Tanenbaum, 2014, Durbhakula, 2018], technologies for increasing the effi-
ciency of the CPU, such as memory cache, reordering commands, etc., energy saving
technologies such as dynamic clock rate changes, such as Intel Turbo Boost[9], etc.
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Although the problem is recognized among researchers [Hennessy, 2013, 10, P. Flem-
ing, 1986], there is no satisfactory and universal approach.

We proposed a methodology for comparing the efficiency of various program-
ming languages constructs or different APIs based on statistical analysis. This method-
ology has been applied to compare the efficiency of different APIs to create threads,
synchronize between threads and share data between threads.

1.1 Main definitions

1.1.1 What is the CPU?

One of the main components of the computer is the CPU. The essence of the CPU’s
work is that it receives the instructions and needed data from the memory and/or
input-output devices. Then CPU based on received input executes the instruction
and stores the output somewhere. Figure 1.1 shows the main parts of the CPU: CU
– control unit, ALU – arithmetic logic unit, and registers.

Now let’s take a look at what kind of work each component performs — the task
of CU it to do the fetching and decoding of the instructions. The ALU performs all
arithmetic and logical operations - executes the instructions. After it, the result is
written to a specific location. Registers are another essential part of the CPU. ALU
and CU stores needed to execute the instruction data in registers. Register - is a very
fast memory within the processor. Various kinds of registers are in the CPU, one
of the most important – program counter, which stores the following instruction to
execute on the processor.

FIGURE 1.1: The main parts of the CPU

1.1.2 What affects the performance of the CPU?

CPU performance is determined by several factors. One of the most important is the
number of the cores in CPU. Each core has CU, ALU, and registers so CPUs with
multiple cores can execute multiple programs simultaneously. But cores need to
communicate with each other; it takes some time, so an increasing number of cores
does not mean increasing in productivity in the same ratio.

Another factor which affects the CPU performance is the speed of the core –
CPU frequency. This value indicates how many instruction cycles the CPU can han-
dle within a second. For example, if core speed is equal to 3 MHz, this means that
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CPU performs three million cycles per second. It is important to understand that
the number of cycles executed per second is not equal to the number of instructions
executed per second. Per one cycle CPU can fetch the instruction and decode an-
other instruction but don’t execute any instruction. And we should keep in mind,
that there are limits to how fast a CPU can be. Often frequency changes dynami-
cally depending on what tasks are running. For example, Intel realized this feature
(called Intel Turbo Boost) in the Core i5, Core i7, Core i9, and Xeon series. Also, CPU
frequency can be increased via BIOS, which theoretically means that the computer
will work faster. But if the CPU executes the instructions too quickly, this means that
data can be corrupted. Also, the CPU can overheat if it is working faster than it was
designed to work.

Memory is also significant for CPU performance. CPU directed by instructions
can command I/O subsystem to load data from HDD to RAM but this requires a
relatively long time. RAM helps to accelerate the process of obtaining data, it stores
the data that are currently being used.

But RAM speed is not enough for modern processors. There is another type
of memory, faster than RAM – cache memory, extremely fast memory. its speed is
much close to the speed of the CPU than RAM. Cache memory can temporary store
instructions and data that is usually used by CPU.

There a few levels of cache memory. First level, L1, is the smallest and fastest to
access; it’s usually the part of the CPU chip. Second level, L2, and third level, L3,
caches are bigger than L1, CPU need more time to access them. These caches are
located between the CPU and RAM.

Each CPU core has its own L1 cache but may share L2 and L3 caches. As L1
(and sometimes L2 or even L3) is always personal for each CPU core, the concept of
cache coherence can also affect the work of the CPU. Cache coherence is the situation
when a few cores work together, and the same memory is in their caches, and both
want to write/read to it. The algorithms for solving such situations are called cache
negotiation protocols (MESI[Papamarcos and Patel, 1984] and MOESI[Papamarcos
and Patel, 1984]).

Also, CPU performance depends on the type of CPU instruction set architecture
(ISA). There are two main approaches to create an ISA – complex instruction set
computer (CISC) and reduced instruction set computer (RISC). CISC often has much
more instructions which are less orthogonal than RISC instructions, so to perform a
complex task RISC needs more instructions but it is easier for them to reach large
clock speed. Currently, the only common CISC architecture is x86, and a classic c
example of RISC architecture is ARM.

Instruction pipelining, superscalar architecture, branch prediction, out-of-order
execution are used to achieve an efficient implementation of both RISC-type or and
CISC-type CPUs.

Instruction pipeline is crucial to achieving high efficiency in modern CPU. The
CPU process the instructions in a several steps. For example, it can be: fetch an
instruction, decode it, execute it, access memory, write back the results. In the fig-
ure 1.2a CPU process each instruction from start to end without a pipeline. It will
take ten cycles to process two instructions. Modern processors achieve higher per-
formance using instruction pipelines. Because the different section of hardware can
handle different steps of processing the instruction, it allows processing a separate
instruction simultaneously. Figure 1.2b shows the execution of instruction with the
pipeline. In one instruction cycle, a processor do fetching of instruction B and in
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the same time decoding instruction A. With a pipeline it will take six cycles to pro-
cess two instructions. To conclude, the strength of the pipeline is that it increases
throughput without affecting the latency.

(A) Execution without pipeline

(B) Execution with pipeline

FIGURE 1.2: Comparison of execution instructions with and without
a pipeline

In a superscalar architecture, several instructions executes simultaneously dur-
ing a single clock cycle by multiple instruction pipelines.

Out-of-order execution is another essential thing for CPU performance. All mod-
ern processors have this feature. The essence of this technique is that the processor
allows commands to be executed not in order until it affects the final result.

Branch prediction is used to help efficiency feed the pipeline with instructions
and out-of-order execution allows unrelated instructions execution while waiting
for data from memory or cache for other.

Branch prediction is one of the techniques CPU’s implements which tries to guess
result of the jump instruction and load corresponding instructions to provide work
for pipeline. When branch is mispredicted, pipeline should be flushed. Branch
predictors are very important in modern processor to achieve higher performance.
There are a few types of prediction: static and dynamic. The static prediction does
not depend on the previous commands story. It can be predetermined in processors,
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or the compiler gives the hints to the processor. The static prediction is simple in
realization, however not very effective — maximum efficiency - 75-80 percentages.
The dynamic prediction depends on the previous history of execution. The dynamic
predictors can use counters, two-way prediction, etc. There are also hybrid variants
of predictors: cyclic predictors, return from function predictors, etc. There are also
architectures that use the neural network to predict branches, for example, AMD
Rysen.

Processor with the help of OS can even execute several programs on one core.
This is achieved by frequent switching between tasks - preemption. Preemptive
scheduler is a part of the system which can interrupt tasks and after a while continue
them, keeping the execution state.

1.1.3 Process

Modern operation systems (OS) represent programs to be executed using the ab-
straction of process. The process is a computer program example, which has its own
set of resources – code, data, registers, address space, etc. The process consists of the
image of the program – a machine code that will be executed, process memory (of-
ten virtual), which includes code and data of the process, its stack, and a heap. The
stack is a part of the process, where all variables, objects, etc that are defined in the
process are set. The heap is dynamic memory; you can allocate a block and free it at
any time. Also, the process consists of operating system descriptors associated with
the process: file descriptors, windows, etc., permissions of the process, including its
owner and the state (context) of the processor – in the first place, the contents of its
registers. One of the most important registers is the program counter, that shows
which instruction CPU has to execute next.

The system with multiple cores or CPUs can run multiple processes simultane-
ously. Also, several processes can work on single CPU. Pseudo-parallel execution
will be achieved by frequent switching of the CPU between processes creating the
illusion that threads are running in parallel. There is only one physical counter of
commands, so when starting each process, its logical counter of commands is loaded
into a real counter.

Processes are isolated from each other, because each of them has its own mem-
ory address space. It cannot directly access shared data in another process. Inde-
pendence between processes means that switching between them takes a relatively
long time: to save and load registers, memory maps, etc., but it’s worth it. One pro-
cess cannot corrupt another, which means that when you have a problem with the
process (working application), you can close it without affecting other processes.

1.1.4 Thread

The process is executed by the thread. The thread has a counter of commands, which
monitors what kind of instruction is to be executed. It has registers that contain
current variables. Although the thread can be performed within the process, they
are different concepts. The processes are used to group resources into a single entity,
threads – for execution on a central processor.

One of the important features of the threads is that the time required to create
them is much less time consuming to create processes (10-100 times faster). When
the threads work within the same CPU, for CPU-bound tasks – when significant
computations are performed, they do not bring any performance gains, but when a
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significant amount of time is spent on I/O waiting, the threads allow to overlap in
time, accelerating the work of the application.

By implementation threads can be divided into kernel threads and user threads.
The difference between them is that that the first are implemented within the kernel
of the OS, and others are implemented in the user-space.

Several threads can be executed within single process. Because of all threads
within the process have the same address space, communication between them can
be very fast, which is a significant advantage. But there is also a significant disadvan-
tage – threads can easily affect the work of each other. For example, a situation may
easily occur when one executing thread writes a value into a variable and another
attempts to read it at the same time. Such a situation is called a data race and may
cause a lot of bugs. To avoid this and similar situations, threads need to be synchro-
nized using various methods. OS and libraries of concurrent-ready programming
languages provides different synchronization tools.

1.1.5 How to synchronize threads?

As threads within the same process have the same address space, they have to be
synchronized when accessing shared resources. In concurrency, there is a problem
called race condition. In terms of C++11, when two or more threads are running and
simultaneously refer to the same variable, and one of this thread write something
in this variable – congratulations, you have a race condition, and in that case, you’ll
have undefined behaviour. Read/write operations aren’t atomic. Operation is called
an atomic if it can’t be interrupted and the other threads can’t see its intermediate
result, operation ”var += 1” isn’t atomic by default. But atomicity can be achieved
using different synchronization primitives. Atomicity of very complex operation
can be achieved, but what’s the price for it?

The standard C++ library provides explicit synchronization tools. Among them,
the most important is the mutexes. Mutexes allow organizing exclusive (serial-
ized) and synchronous access to shared data. The simplest class of mutexes in
C++ is std::mutex. Class std::mutex has a few methods to work with mutex: lock(),
try_lock() and unlock(). lock() acquires the mutex. If the mutex is blocked, it blocks
execution until it succeeds in acquiring it. Does not return anything. try_lock() –
tries to acquire the mutex. In any case, the return takes place immediately – the
thread is not blocked. If it managed to acquire the mutex – returns true, otherwise –
false. unlock() – method releases (unlocks) the mutex.

Also, there is one crucial thing to know – if in the process of running the code
between lock() and unlock() will throw an exception, the mutex will remain blocked
– there will be a so-called deadlock. Of course, we could use try-catch(...) con-
structions and there release the mutex. But such decisions are bulky and vulner-
able to mistakes. C++ provides corresponding RAII wrappers – std::lock_guard,
std::unique_lock and so on.

Another way of synchronization is conditional variables. A conditional vari-
able allows the thread to notify another thread, that there is a work for it and this
thread will wake up. When you implement the conditional variable, you will meet
the following situations: the thread will not be awakened in response to the signal-
notification and the thread may be awakened even if there wasn’t any notification.
The second situation is more acceptable so no notification is missed but spurious
wake-ups can occur. C++ provides corresponding std::conditional_variable class.

A barrier is another synchronization methods. It has two variable: a variable
that tracks whether threads can move further or not, and counter of threads number,
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reached the barrier. The barrier waits until all threads reach it and only after it allows
them to continue the execution.

Semaphore is another synchronization method. It’s an atomic counter which
can be within 0 and any positive custom number. Over the semaphore you can
perform the following operations: initialize it (set the number), decrease or increase
semaphore’s number.

As of C++17 standard C++ does not provide barriers or semaphores but third-
party libraries do.
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Chapter 2

Related works

The theme of code productivity analysis is quite popular among researchers, but
there are quite a few official articles. Researches on this theme is usually published
on relevant sites but not in official resources.

The aim of the paper called ”An Analysis of Linux Scalability to Many Cores”
(Boyd-Wickizer et al., 2010) is to discover how well traditional kernel designs al-
low the different applications to scale. They’ve tested two types of applications:
bad scaled (memcached, Apache serving static files, and multicore MapReduce li-
brary Metis) and well-scaled applications that were designed for parallel execution
(gmake, PostgreSQL, Exim mail server and Psearchy file indexer). The chosen set of
applications stresses essential parts of many kernel components: page cache, process
manager, scheduler, memory manager, etc. To avoid execution bottlenecks caused
by hard disk writes, authors used tmpfs (Snyder, 1990) filesystem.

Researchers tried to identify and fix kernel implementations bottlenecks which
arose during the application testing. For example, they’ve detected the problem in
the Metis application that there were super per-page soft page faults contend on a
per-process mutex. This problem was fixed by protecting each super-page memory
mapping with own mutex.

Based on the experiments and researches with previously mentioned applica-
tions, authors have created a benchmark, called MOSBENCH, to measure the scal-
ability of the operating system. They used it to compare scalability of the latest
version of the kernel at the time of writing the article and their improved version of
the kernel called PK. In figure 2.1[12], presented results of their comparison. Most
applications scale better with the improvements, scalability bottlenecks are caused
by imperfect load balance, hardware bottlenecks, etc.

In the paper called ”Capriccio: Scalable Threads for Internet Services” created
by ”Von Behren et al., 2003 the researchers realized scalable user-level thread pack-
age for use in the servers with high concurrency called capriccio. The package im-
plemented for Linux, it uses POSIX threads API. They included various interesting
techniques: linked stack management - minimization of the wasted stack space and
resource-aware scheduling - adaptation to the system’s current resource usage. Re-
searches also use various ready-made solutions, for example, to efficiently context
switches they’ve used Edgar Toernig’s coroutine library, which provides extremely
fast context switches.

Researchers compared the results of their implementation with different thread
packages. Capriccio implementation shows better results compered to Linux Threads.
To study the scalability of the new package, they run single producer-consumer
microbenchmark and used condition variables to synchronize threads. Capriccio
showed good results, especially on the large numbers of producers/consumers. In-
put/Output performance is good too, researches conducted pipetest: concurrently
pass a number of tokens to fixed number of pipes and measured throughput.
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FIGURE 2.1: MOSBENCH results summary (taken from Boyd-
Wickizer et al., 2010)

Capriccio package was also applied to Apache 2.0.44 web server and and im-
proved its performance by 15 percent.

Next paper I want to mention is called ”Producing Wrong Data Without Doing
Anything Obviously Wrong!” created by Diwan, Hauswirth, and Sweeney, 2009.
The paper aim is to discover the effect called measurement bias and proof that the
performance is often vulnerable to the experimental setup in which the performance
is measured. The measurement bias is something external to the program which
can affect its performance. For example, UNIX environment. Researchers empiri-
cally found that its changes affect the performance. There are many others reasons
which may cause measurement bias: room temperature can affect CPU clock speed,
previously mentioned UNIX environment size, link order, etc. Authors chose last
two to test. In order to detect the measurement bias they used benchmarks from
SPEC CPU2006 [13] (gcc, libquantum, perlbench, bzip, gobmk, milc, lbm, etc.). All
experiments were conducted using different best practices: ran experiments in a
minimal environment, deleted all unused environmental variables, repeat all exper-
iments multiple times to ensure that produced data is valid, etc. All benchmarks
are one-thread applications. For the experiments authors used Pentium 4, a Core 2
workstation and m5 simulator. Each benchmark was run 5,940 times.

Authors discovered speed up of O3 optimization over O2 with different link
orders. Tests were conducted on the previously chosen benchmarks. In figure 2.2a
presented received results. Each violin represents data for all the link orders for
one benchmark. The width of y-value is proportional to the number of times y was
observed; x-value represents the range of obtained speedup (or speed down). From
this figure, we can conclude that the violins result for five benchmarks (libquantum,
perlbench, bzip2, sphinx, lbm) is below 1, which means that conclusions about the
benefit of the O3 optimization may be false. Data was obtained on Core 2. On the
Pentium 4 results are even more interesting: all results are below 1. The same result
was obtained for m5 simulator using the O3CPU. There are many reasons which
may cause this phenomenon: link order can affect the alignment of code, causing
problems within different hardware buffers, cause conflict misses in the instruction
cache, etc.
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(A) Link order

(B) UNIX environmental size

FIGURE 2.2: Received bias in Intel’s C compiler on Core 2

Figure 2.2b represented results of discovering the effect of changing the UNIX en-
vironment size on the speedup of O3 over O2 across all previously mentioned bench-
marks. From this figure, we can conclude that the violins result for four benchmarks
(libquantum,perlbench,sphinx, lbm) are less than 1, which means that conclusions
about the benefit of the O3 optimization may be false in this case too. This is the
data obtained on Core 2. On the Pentium 4 results are also interesting: outcomes of
six benchmarks are below 1. In this case, measurement bias can be caused because
of affecting the starting address of the C stack by changing UNIX environmental
variable. The second reason, which applies only to perlbench benchmark, is that it
copies contents of the UNIX environment to the heap, thus changing the UNIX envi-
ronmental variable can change the alignment of heap-allocated structures in various
hardware buffer.

To conclude, in the comparison between two systems, measurement bias arises
when experimental setup on one of the system is better than another. So measure-
ment bias can be the reason to choose one of the systems as better while it’s not
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true. Also, as the authors demonstrated, this effect is commonplace because they’ve
received it on different benchmarks and different architectures.

In another paper called “Just how accurate are performance counters?” cre-
ated by W. Korn, P.J. Teller, and G. Castillo in 2001, authors present methodology
for determining the accuracy of different system counters. They discovered results
obtained from MIPS R12000, SimpleScalar’s sim-outorder simulator based on their
benchmarks. Performance data were collected via perfex and libperfex. The results
of their benchmarks indicate that obtained data with performance counters may
lead to wrong conclusions. Accuracy of the counters depends upon the interface
used, the application being measured, and the events being measured. For example,
wrong results can be obtained because of measuring code hasn’t enough granularity
to ensure that overhead given by counters doesn’t dominate. In another paper called
Accuracy of Performance Monitoring Hardware created by Maxwell et al., 2002 this
work was extended to the three new platforms: POWER3, IA-64, and Pentium. For
exploring usability and accuracy issues, PAPI interface for hardware counting was
used.

PAPI (Performance Application Programming Interface) is a standard specifica-
tion used for hardware performance counters. In the paper called ”Using PAPI for
hardware performance monitoring on Linux systems” (Dongarra et al., 2001) capa-
bilities of PAPI were discussed in the context of Linux. There are two interfaces
in PAPI. The high-level interface was designed for relatively simple measurements:
stop, start and read counters of different events, that are in the predefined list. The
low-level interface allows managing hardware events in the user-defined groups.
The whole list of hardware counters available in PAPE is in papiStdEventDefs.h file.
Modern processors have a short number of hardware events which can be accessed
simultaneously. This limitation dramatically reduces the amount of information that
a user can receive after a single program run, but multiplexing hardware counters
can help with such a restriction. PAPI uses a high-resolution interval timer to mul-
tiplex. PAPI uses perfctr to access the counters on Linux/x86 platforms. Supported
processors are all 5 and 6 family processors by Intel, AMD K7 Athlon, Cyrix 6x86MX,
MII, and III, WinChip C6, 2, 2A, 2B, and 3. With PAPI you can access different timers:
for example timers which return time, measured from an arbitrary point in virtual
units. Also, you can get information about the hardware on which the program is
running: the number of CPUs, the cycle time of the CPU, etc PAPI can also provide
the information about he start and end addresses of the text, data, etc.

The PAPI project also developed a graphical display of PAPI performance data.
But this tool is more for demonstrating the capabilities of PAPI. Great tool to collect
statistical program counter data is Visual Profiler. It can also graphically display the
results on Linux Intel machines. vprof also provides access to a list of PAPI hardware
counters.

Another way to monitor the performance is to use different libraries for bench-
marking — for example, Google Benchmark, Hayai library, Celero library, Nonius
library, etc. One I want to discuss in more details is Google Benchmark [10]. The
user can test his or her code snippet and get the following output: wall-clock time in
nanoseconds (it can be changed), CPU time also in nanoseconds and number of in-
voked iterations. The benefits of this library are the following: very easy to use and
to customize, has benchmarks for the multithreaded program, has manual timing,
which is very useful when a code is executing on GPU or the other devices where
standard CPU timing is not relevant. But this Google Benchmark provides only in-
formation about the performance of user’s code, don’t analyse it to weaknesses or
different faults, don’t give any statistical information about the received results.
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Chapter 3

Framework overview

3.0.1 How to measure time?

To speak about assessing the efficiency of some methods that improve performance,
we need somehow to measure this performance. One of the main performance
metrics is latency, the time to perform a specific task. Time measurements is quite
complicated due to the complexity of modern computer systems: preemption, tech-
nologies for increasing the efficiency of the CPU, like caches, out-of-order execution,
pipeline, branch predictor, etc., energy saving technologies, for example, CPU fre-
quency changes depending on what tasks are running. This section describes some
possible approaches to measure the execution time of some code fragment of the
multithreaded program.

Each process and thread can be executed in the user space[A. Tanenbaum, 2014],
where thread executes the code, and in the kernel space[A. Tanenbaum, 2014], where
thread carry out system the calls. Both Windows and POSIX provide access to the
time spent in each mode. But in this research wall-clock time is investigated. Wall-
clock time gives an estimate of how much time a code snippet was performed tak-
ing into account all the features of the processor that were mentioned in the section
”What affects the performance of the CPU?”. For better reproducibility it is impor-
tant to reboot the computer before each measurement and to ensure that there is a
minimum number of other executed processes.

POSIX-compatible OSes and MS Windows provide idea of the process time. This
time includes the execution time of all process threads – so the measured time in
this way may be greater than the physical time that the program was executed. The
thread time includes only the time of its execution. The process time measures the
time during CPU works on the certain task.

Now let’s take a closer look at what functions can be used to get process and
thread times in POSIX. First of them to mention is times().

The function stores the current process execution time using the pointer being
passed to it. Time is returned in certain abstract units, the quantity of which can be
obtained per second using sysconf(_SC_CLK_TCK), where _SC_CLK_TCK is the number
of this abstract units.

Usage of the function:

# inc lude <sys/times . h>

s t r u c t tms {
c l o c k _ t tms_utime ;
c l o c k _ t tms_stime ;
c l o c k _ t tms_cutime ;
c l o c k _ t tms_cstime ;

} ;
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c l o c k _ t times ( s t r u c t tms ∗buf ) ;

tms proc_t ;
t imes (& proc_t ) ;

proc_t_sys = proc_t . tms_stime ;
proc_t_user = proc_t . tms_utime ;
p r o c _ t _ t o t a l = proc_t_sys + proc_t_user ;

The next function you can use in POSIX is getrusage(). The structure that this
function returns looks like this:

# inc lude <sys/time . h>
# include <sys/resource . h>

s t r u c t rusage {
s t r u c t t imeval ru_utime ; /∗ user CPU time used ∗/
s t r u c t t imeval ru_stime ; /∗ system CPU time used ∗/
long ru_maxrss ; /∗ maximum r e s i d e n t s e t s i z e ∗/
long r u _ i x r s s ; /∗ i n t e g r a l shared memory s i z e ∗/
long r u _ i d r s s ; /∗ i n t e g r a l unshared data s i z e ∗/
long r u _ i s r s s ; /∗ i n t e g r a l unshared s tack s i z e ∗/
long ru_minf l t ; /∗ page rec la ims ( s o f t page f a u l t s ) ∗/
long r u _ m a j f l t ; /∗ page f a u l t s ( hard page f a u l t s ) ∗/
long ru_nswap ; /∗ swaps ∗/
long ru_inblock ; /∗ block input operat ions ∗/
long ru_oublock ; /∗ block output operat ions ∗/
long ru_msgsnd ; /∗ IPC messages sent ∗/
long ru_msgrcv ; /∗ IPC messages rece ived ∗/
long ru_ns igna ls ; /∗ s i g n a l s rece ived ∗/
long ru_nvcsw ; /∗ voluntary contex t switches ∗/
long ru_nivcsw ; /∗ involuntary contex t switches ∗/

} ;

i n t getrusage ( i n t who, s t r u c t rusage ∗usage ) ;

The argument who may acquire the values RUSAGE_SELF, then the function will
return the information about the process, RUSAGE_CHILDREN – function will re-
turn information about child processes, and in linux one more option is possible -
RUSAGE_THREAD – return the thread information. Times are stored in the fol-
lowing structure:

s t r u c t t imeval {
t ime_t tv_sec ; /∗ seconds ∗/
suseconds_t tv_usec ; /∗ microseconds ∗/

} ;

The rusage structure contains a lot of other useful information: hard page faults,
soft page faults etc. but it is not used in this research. This function can be used for
the current process and thread in the following way:

rusage p_times ;
t imes (&p_times ) ;
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getrusage (RUSAGE_SELF , &p_times ) ;
# i f d e f RUSAGE_THREAD
rusage t_t ime ;
getrusage (RUSAGE_THREAD, &t_t ime ) ;
# endi f

user_process_t ime = p_times . ru_utime . tv_sec + p_times . ru_utime . tv_usec ;
sys_process_t ime = p_times . ru_stime . tv_sec + p_times . ru_stime . tv_usec ;
t o t a l _ p r o c e s s _ t i m e = sys_process_t ime + user_process_t ime ;

# i f d e f RUSAGE_THREAD
user_thread_time = t_t ime . ru_utime . tv_sec + t_t ime . ru_utime . tv_usec ; ;
sys_thread_t ime = t_ t imes . ru_stime . tv_sec + t_ t imes . ru_stime . tv_usec ;
t o t a l _ t h r e a d _ t i m e = thread_time_user + thread_t ime_sys ;
# endi f

For MS Windows similar functions areGetProcessTimes() and GetThreadTimes().
The output of the GetProcessTimes() is almost the same as the output of the previ-
ously mentioned function times(). The output of the GetProcessTimes() is similar to
getrusage()/clock_gettime().

There is another way, much easier to measure the time - function clock() from
standard C and C ++ libraries. It returns the value in abstract units, to convert this
units in the seconds, you need to divide it into a CLOCKS_PER_SEC constant. In
the POSIX standard it is 1 000 000, for Windows 1000. The start point is somewhere
in the past, so you should only look at the difference between two clock () calls:

s td : : c l o c k _ t s t a r t = std : : c lock ( ) ;

//beginning of measurement
//end of measurement

double durat ion = ( std : : c lock ( ) − s t a r t ) ;
double c_durat ion = duration\ s t a t i c _ c a s t <double >(CLOCKS_PER_SEC ) ;

The solution is the cross-platform and simple. However, it has many disadvan-
tages, for example, for POSIX it returns processor time, for windows – wall time.
Wall time is different from processor time, it measures the real time execution of the
program for the user. This is like a wall clock that goes until the program is running,
and does not stop even when the CPU switches to another task.

One of the ways to measure wall time is to use chrono library contains various
timers, including chrono::high_resolution_clock. It is a timer with best available
resolution. Its static method now() returns the current time in the form std::chrono::time_point.
With two moments of time, you can get their difference – an object of type std::chrono::duration,
and than it can be converted to seconds, miliseconds, etc. To check whether the timer
is steady – whether it counts accounts for system time changes (due to user inter-
vention, daylight saving time, etc.) or not, you can by using the static field is_steady.
chrono::high_resolution_clock can be used as follows:

auto s t a r t = std : : chrono : : h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
//beginning of measurement
//end of measurement
auto end = std : : chrono : : h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
s td : : chrono : : durat ion_cast <std : : chrono : : microseconds >
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( end − s t a r t ) . count ( ) ;

The problem is that both the compiler and processor have the right to rearrange
commands to optimize a code. And there may be a situation where the measurement
point is shifted excessively backward or forward relative to the beginning of the code
being measured. You can forbid the compiler and processor to do this by inserting
the appropriate barriers. Of course, at the same time, we make task of optimization
of our code harder for the compiler and CPU and the barriers themselves take some
time to execute. However, for our task, this should not be a problem. C++11 in-
cludes the atomic_thread_fence() memory barrier. Measurements using the barrier
will look like this:

# def ine OUR_FENCE( )

do { std : : a tomic_thread_fence ( std : : memory_order_seq_cst ) ; } while ( f a l s e )

i n l i n e std : : chrono : : h i g h _ r e s o l u t i o n _ c l o c k : : t ime_point
get_current_wal l_ t ime_fenced ( ) {
i f ( ! s td : : chrono : : h i g h _ r e s o l u t i o n _ c l o c k : : i s _ s t e a d y

&& PRINT_NON_STEADY)
std : : c e r r << " Warning :
s td : : chrono : : h i g h _ r e s o l u t i o n _ c l o c k i s not steady . " << std : : endl ;
OUR_FENCE ( ) ;
auto res_t ime = std : : chrono : : h i g h _ r e s o l u t i o n _ c l o c k : : now ( ) ;
OUR_FENCE ( ) ;
re turn res_t ime ;

}

Another option to measure performance is hardware counters of CPU cycles
number. High-resolution timers often rely on them. One of the counters for x86
architecture is Time Stamp Counter, a 64-bit register that contains the number of
cycles calculated from computer restart. The content of this counter can be obtained
using the instruction RDTSC. But in modern processors, there are many problems
with similar counters. The processor can reorder commands so the RDTSC cannot
be executed if we would like it. Modern processors change their clock frequency,
and the counter runs at a fixed frequency. So the counters are difficult to use when
it comes to measuring the time of code execution.

Another way to analyse the performance of Linux is perf. This is a profiler that
is built into the kernel but has a user-space utility. It can count various events -
perf stat command, print the most used functions - perf top, etc. One of the most
important results that perf allows you to get is task-clock – execution time, taking
into account the time of all threads. Other important results are context-switches,
cpu-migrations, page-faults, number of executed cycles and instructions.

Another, the significant and powerful profiler is VTune[5]. It is a commercial
application for analyzing the performance of programs for computers based on x86
processors. It has both a graphical user interface and command line support. Vtune
helps to understand where the program spends most of the runtime, detect hard-
ware bottlenecks. You can also get a call tree, view at the assembler code, see what
functions are most time-consuming. Vtune also shows information about threads,
what exactly they perform, how they synchronize and interact with each other.
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In our research we are investigating wall time. chrono::high_resolution_clock
timer is used with appropriate memory barriers to measure wall time. Also, frame-
work for measuring time returns the value of thread user/kernel time, process user/k-
ernel times using previously discussed getrusage(). These values are not used in this
study, but they may be useful in future studies.

The code is based on what was learned on the course of architecture of computer
systems.

During our research results of perf were also collected for every single program
run. This data can also be useful in future studies.

Having time measurements results, we need to use it depending on what is being
discovered. For example in one of our experiments – investigating thread creation
time – we are interested in just thread creation time, so here we used the minimum
time, the time that was spent only on the thread creation, and not on any other
things. In another experiment - capture and release of the mutex by many threads in
the one program, we are not interested in the least time we have received. The least
time corresponded to the situation when the thread was fortunate no one threads
occupied the mutex, and there was no competition for it. In this experiment, we
want to investigate the threads competition for the mutex, so here the most optimal
is the average time

3.0.2 Cullen and Frey Graph

To draw some conclusions from the received data we used hypothesis testing tech-
nique. For example, this technique can be used to understand to what theoretical
distribution obtained data belongs.

Cullen and Frey graph helps to understand what theoretical distributions the
data obtained precisely do not belong and to which distribution obtained data are
more likely to belong.

Cullen and Frey graph use skewness and kurtosis to produce the result. Kurtosis
is a coefficient that characterizes how much the distribution has a pronounced peak
relative to the normal distribution. Skewness is a coefficient that characterizes the
asymmetry of the obtained empirical distribution.

As already mentioned, skewness and kurtosis are not reliable characteristics of
the distribution. You can apply the bootstrap procedure to take into account the inac-
curacy of the estimated skewness and kurtosis. Values of skewness and kurtosis are
computed on the bootstrap samples. The procedure consists of iteratively replac-
ing a certain amount of data from the distribution. But the problem is, that some
skewness and kurtosis have very big variance cannot be solved by bootstrapping.
Cullen and Frey Graph is used to pre-evaluate the distribution. Figure 3.1 depicts
the example of a graph.

3.0.3 Kolmogorov-Smirnov test

The goodness test of fit is a statistical hypothesis test is used to determine if some
obtained data represents the data of the actual population. There are a few good-
ness tests of fit which are commonly used in statistics: Kolmogorov-Smirnov Test,
Anderson-Darling Test, Chi-squared Test, etc.

In this research we used Kolmogorov-Smirnov Test to determine if the distribu-
tion of the obtained data belongs to some theoretical distributions (normal distribu-
tion, lognormal, exponential etc.).
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FIGURE 3.1: Time example of Cullen and Frey Graph build on ob-
tained data.

Basically, K-S tests null hypothesis (obtained sample belongs to some specified
distribution) against alternate hypothesis (obtained sample doesn’t belong to some
specified distribution).

To be more precise, it compares the empirical distribution function of some ob-
tained data and the cumulative distribution function which is associated with null
hypothesis. K-S test measures maximum vertical distance between functions.

The cumulative distribution function F(x) of a random variable X is P(X ≤ x),
where x is an arbitrary real number. The empirical distribution function G{(x)}
gives the P(X ≤ x) based on the results of observations. It’s a step function, that
increases by 1/N at each data point. Suppose we have N observations x1, . . . , x_n,
the empirical distribution function is defined as:

Gobs(x) =
number of elements in the sample ≤ x

N
(3.1)

The statistic of K-S is defined as:

D = sup
x
|Fexp(x)− Gobs(x)| (3.2)

The statistic, D, compares data to what is expected under the null hypothesis.
When D is calculated, the next step is to compare the critical value to it (critical
values for K-S test can be found here[14]). If D is less than critical value, than null
hypothesis has to be rejected, and alternate hypothesis has to be accepted.

Another measure of the K-S test results is p-value. If the test statistic is in rejec-
tion region, where rejection region is a set of points where null hypothesis should be
rejected, the p-value is smaller than the significance level. A small p-value (typically
≤ 0.05) is an evidence against the null hypothesis, so it can be rejected.
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3.0.4 Wilcoxon Paired Signed Rank Test

Another important test we used is the Wilcoxon Paired Signed Rank Test. All ex-
periments were carried out with the same input parameters on different machines,
so we have to use the paired version of the test. We used this test to determine if
two obtained samples from two different experiments belong to the same statistical
population. Unlike paired Student’s t-test, Wilcoxon test can be applied if data isn’t
normally distributed.

Wilcoxon Paired Signed Rank Test tests the null hypothesis (the obtained sam-
ples belongs to the same statistical population) against alternate hypothesis the ob-
tained samples doesn’t belong to the same statistical population).

The test procedure looks like this: we have two paired sets of data A and B.
Than we compute the difference between every element of two sets (Bi – Ai) and
take absolute of this value. Each absolute value is assigned a rank relative to the
increasing order. Then we need to sum up all ranks of positive and negative values
(Tpos, Tneg). The statistic of Wilcoxon Paired Signed Rank Test is defined as:

D = min(Tpos, Tneg) (3.3)

If D is less than critical value (Critical values for Wilcoxon Paired Signed Rank
Test can be found here[15]), than null hypothesis has to be rejected, and alternate
hypothesis has to be accepted.





21

Chapter 4

Experiments

4.1 Threads creation

Threads are one of the main elements of low-level programming. An important
part of their strength is that, along with the preemption, it might be more efficient
to create more threads than there are CPUs in a processor. We used our frame-
work to compare the efficiency of creating threads by different APIs: POSIX threads
Linux, std::thread implementation by GCC, std::thread implementation by clang,
boost::thread and tbb::thread.

On different machines (Table 4.1) we run the program that creates different num-
ber of threads and measures the time it takes to run them. Threads immediately go
into standby. For each number of threads created, the program was re-executed five
hundred times.

Device
OS distribu-
tion/kernel

CPU
freq(MHz)/Cores/
RAM(Gb)

Dell Inspirion
5521

Ubuntu
16.04/4.15.0

Intel Core i7-
3517U

800-3000/2/8

HP Probook 440
G5

Ubuntu
18.04/4.15.0

Intel Core i5-
8250U

400-3400/8/16

Raspberry Pi
Model 3B+

Raspbian
2018/4.14.79

Broadcom
BCM2837B0,
Cortex-A53
(ARMv8)

600-1400/4/1

TABLE 4.1: Computers on which researches were conducted.

In the figures A.10 the minimum run times for each API are shown. In this experi-
ment only time for thread creation is important. From this results it can be concluded
that the creation of the first threads requires a relatively long time, obviously, there
is a certain "warm up" of the system - the allocation of memory structures, loading
pages with the corresponding code, etc. It is also obvious that POSIX threads Linux,
gcc std::thread, clang std::thread and boost::thread showed a very similar results,
but tbb::thread need more time to create first threads than the others. So, it’s less
effective to use tbb when a small number of threads executes the program.

The figure 4.1 depicts the examples of the histograms of the received time re-
sults of one thread creation when creating 100 threads in one program. All results
for all computers and thread APIs that were tested are shown here A.1, A.2, A.3
It is obvious that there is a certain peak time on each histogram. In order to find
out which theoretical distributions the obtained data more likely belongs to, Cullen
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and Frey Graph was constructed. The Kolmogorov-Smirnov test was used to deter-
mine whether the distribution is normal, lognormal, exponential, gamma or neither.
The K-S test showed that none of the obtained data belongs to the above-mentioned
distributions – p-value in all tests turned out to be less than 0.05.

FIGURE 4.1: Examples of the histograms of the received time results
of one thread creation when creating 100 threads in one program

Therefore, to determine the differences between the thread time creation for dif-
ferent APIs Wilcoxon signed rang test was applied. In all tests, the Wilcoxon test
showed a negative result (p-value in all tests turned out to be less than 0.05), which
means that the difference between thread time creation for different APIs is statis-
tically significantly different from zero. Though, the overhead costs of std::thread,
boost::thread, gcc std::thread, clang std::thread or tbb::thread are small compared to
posix threads.

Since the distribution of the obtained data is not normal, it makes no sense to
talk about the variance.

Some of the results of this experiment were published earlier[Y. Laba, 2019].

4.2 Mutex try_lock()

In the next experiment, we investigated the time to request the same mutex from
many threads simultaneously. Mutexes are one of the main primitives to synchro-
nize threads.

The experiment was conducted on various implementations: POSIX, std imple-
mentation by GCC, std implementation by clang, boost and tbb on the computers
described in the table 4.1. Each program was re-executed a thousand times. Condi-
tions of the experiments were as follows: before the mutex was requested by many
threads, it was captured by the main thread. Every thread tried to capture the mutex
for 10,000 iterations. In this experiment, we used the function try_lock() – signa-
ture depends on what API was used. This function immediately returns an answer
whether the mutex is captured or not and if not, thread capture it. In our experiment,
the mutex is already captured. We are investigating time to request the same mutex
by many threads. It makes sense to use the average time here. The minimum time
would correspond to the situation when the thread was fortunate and nobody tried
to capture the mutex. It is interesting for us to investigate how much time it takes
for a thread of one or another implementation to request the mutex when there is a
competition between threads. In the figures A.11 the average run times to request
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mutex by a thread when a different number of threads tries to request it are shown
for each API.

From these graphs, it can be concluded that the POSIX implementation is not the
fastest.

The figure 4.2 depicts examples of the histograms of the received time results of
the mutex request by thread, when 100 threads tries to request it. All results for all
computers and thread APIs that were tested are depicted here A.4, A.5, A.6.

FIGURE 4.2: Examples of the histograms of the received time results
of the mutex request by thread, when 100 threads try to request it in

one program

The Cullen and Frey Graph and the Kolmogorov-Smirnov test were applied to
determine which of the theoretical distributions the data obtained in this experiment
belongs to. The Kolmogorov-Smirnov test showed very small p-value (less than
0.05) when checking if obtained data belongs to normal, lognormal, exponential and
gamma distribution. Again, our data isn’t normally distributed therefore it makes
no sense to talk about variance. The Wilcoxon signed rang test was also applied.
In all tests, it showed a negative result, which means that there are time overheads
depending on the implementation.

4.3 Mutex lock()/unlock()

The next experiment is also related to the mutexes, but we investigated the time to
capture and release the same mutex from many threads simultaneously. The exper-
iment was also conducted on various implementations: POSIX, std implementation
by GCC, std implementation by clang, boost and tbb on the computers (Table 4.1).
Each program was re-executed a thousand times. Every thread captured and im-
mediately released the mutex for 10,000 iterations. In this experiment, we used the
functions lock() and unlock() – signature depends on what API was used. lock()
captures mutex and unlock releases it. lock() doesn’t return anything if mutex is
occupied by another thread, it will just wait. We are investigating time to capture
and release the same mutex by many threads. It also makes sense to use the average
time here. The minimum time would correspond to the situation when the thread
was fortunate and mutex was free. It is interesting for us to investigate how much
time it takes for a thread of one or another implementation to capture and release
the mutex when there is a competition between threads. In the figures A.12 the av-
erage run times to capture and release mutex by a thread when a different number
of threads try to request it are shown for each API. The received results are quite
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obvious, the larger the number of threads that capture and release the mutex, the
longer is the execution time.

The figure 4.3 depicts examples of the histograms of the received time results of
the occupating and releasing a mutex by thread, when 100 threads try to capture and
release it. All results for all computers and thread APIs that were tested are depicted
here A.7, A.8, A.9.

FIGURE 4.3: Examples of the histograms of the received time results
of the capture and release mutex by thread, when 100 capture and

release mutex in one program

The Kolmogorov-Smirnov doesn’t show that the obtained distributions belong
to normal, lognormal or gamma distribution. We can’t speak about variance in this
case too, In all tests, the Wilcoxon test showed a negative result, which means that
there are time overheads depending on the implementation.

In all the experiments, the code was compiled with -O3 optimization.
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Chapter 5

Conclusions

In this research, we developed and tested a framework for testing various code snip-
pets. We have tested the framework on several tasks.

None of the obtained distribution results belongs to the normal distribution so
we can not talk about variance. We also found that in all the experiments the Wilcoxon
test showed negative results. It indicates that there is a time overhead between dif-
ferent threads and mutexes implementations. Respectively, there is a difference in
performance. We empirically showed that the POSIX implementation is not always
the fastest. For example, in the mutex try_lock() experiment for Dell the fastest is
std implementation by clang, for HP the fastest is also std implementation by clang,
and for Raspberry Pi the fastest is tbb.(Figures A.11).

This framework is planned to be used in the near future for other tasks, for exam-
ple, future-promise. We are currently running an experiment and apply this frame-
work to various implementations of thread-safe queues (boost lockfree queue, tbb
concurrent queue). Unfortunately, due to the time constraints, the results of these
experiments are not part of this work.
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Appendix A

Plots
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FIGURE A.1: Histograms of the received time results of one thread
creation when creating 100 threads in one program on Dell Inspirion

5521.
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FIGURE A.2: Histograms of the received time results of one thread
creation when creating 100 threads in one program on HP Probook

440 G5.
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FIGURE A.3: Histograms of the received time results of one thread
creation when creating 100 threads in one program on Raspberry Pi

3.
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FIGURE A.4: Histograms of the received time results of same mutex
request per one iteration by thread when creating 100 threads in one

program on Dell Inspirion 5521.
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FIGURE A.5: Histograms of the received time results of same mutex
request per one iteration by thread when creating 100 threads in one

program on HP Probook 440 G5.
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FIGURE A.6: Histograms of the received time results of same mutex
request per one iteration by thread when creating 100 threads in one

program on Raspberry Pi 3.
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FIGURE A.7: Histograms of the received time results of the capture
and release mutex by thread, when 100 capture and release mutex in

one program on Dell Inspirion 5521.



Appendix A. Plots 35

FIGURE A.8: Histograms of the received time results of the capture
and release mutex by thread, when 100 capture and release mutex in

one program on HP Probook 440 G5.



36 Appendix A. Plots

FIGURE A.9: Histograms of the received time results of the capture
and release mutex by thread, when 100 capture and release mutex in

one program on Raspberry Pi 3.
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(A) Dell Inspirion 5521

(B) HP Probook 440 G5

(C) Raspberry Pi 3

FIGURE A.10: Time to create one thread when creating different num-
ber of threads in one program, us.
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(A) Dell Inspirion 5521

(B) HP Probook 440 G5

(C) Raspberry Pi 3

FIGURE A.11: Time to request mutex by thread, when different num-
ber of threads tries to request it, us.
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(A) Dell Inspirion 5521

(B) HP Probook 440 G5

(C) Raspberry Pi 3

FIGURE A.12: Time to capture and release mutex by thread, when
different number of threads tries to request it, us.
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